

AFRL-RI-RS-TR-2009-112
Final Technical Report
April 2009

SCALABLE KNOWLEDGE DISCOVERY
THROUGH GRID WORKFLOWS

University of Southern California

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-112 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

DEBORAH A. CERINO JOSEPH CAMERA, Chief
Work Unit Manager Information & Intelligence Exploitation Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 09
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Sep 06 – Mar 09
4. TITLE AND SUBTITLE

SCALABLE KNOWLEDGE DISCOVERY THROUGH GRID
WORKFLOWS

5a. CONTRACT NUMBER
FA8750-06-C-0210

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
31011G

6. AUTHOR(S)

Yolanda Gil, Ewa Deelman, Jihie Kim, Paul Groth, Gaurang Mehta, Varun
Ratnakar and Karan Vahi

5d. PROJECT NUMBER
TNGR

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey CA 90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIED
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-112

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW 2009-1531

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of this effort was to drastically reduce the human effort required to configure and execute new workflows for data analysis
from weeks to minutes by eliminating the need for costly human monitoring and intervention. This involves developing end-to-end
data analysis systems to analyze data from many different sources and with many different algorithms and analytical tools. Their
approach combined three central ideas: 1) workflows with rich representations of algorithmic requirements and data products, 2)
semantic representations to enable automatic generation of complex workflows, and 3) grid computing to manage the high-
performance of many workflows in distributed cross-organization environments.

15. SUBJECT TERMS
Computational workflows, grid computing, semantic representations

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

102

19a. NAME OF RESPONSIBLE PERSON
Deborah Cerino

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

TABLE OF CONTENTS

1. Goals of System Research in the Tangram Program .. 1
2. Architecture of the Workflow System .. 2

2.1 Major Components of the Workflow System ... 3
2.2 The Wings/Pegasus Workflow System ... 4
2.3 Middleware Services Used by the Workflow System .. 6
2.4 Workflow Execution Facilities ... 7

3. Research Results ... 8
3.1 Automatic Workflow Generation ... 8

3.1.1 Data, Components, Workflows, and Workflow Requests: Requirements and
Examples ... 9
3.1.2 Formalization ... 17
3.1.3 Algorithm: Automatic Template-Based Workflow Generation 29
3.1.4 A walkthrough Example of Workflow Generation ... 40

3.2 Workflow Ranking and Selection ... 49
3.3 Managing Creation and Execution of Multiple Workflows 49

4. Support for Program Integration ... 51
4.1. SR-12 Workflow Generation API .. 52

5. Major Milestones: Demonstrations and Evaluations .. 56
5.1 SR-6 Demonstration.. 56
5.2 SR-12 Demonstration.. 63

5.2.1 SR-12 Functional Requirement Relevant to SR .. 64
5.2.2 SR-12 Technical Requirements Relevant to SR .. 66

5.3 SE-18 Evaluation .. 68
5.3.1 SE-18 Metrics and Requirement Relevant to SR ... 68

6. Support for Program Evaluations .. 71
6.1 Program Testbed ... 71
6.2 Logging Support ... 73

6.2.1 Logging Format ... 73
6.2.2 Logging Ontology .. 74
6.2.3 Extension to the Workflow Generation API for Logging 75
6.2.4 Client Side Logging Library .. 75

7. Software Releases ... 76
7.1 Installation of the SR Workflow System .. 76

7.1.1. Required Software .. 76
7.1.2. Build and Install Wings .. 76
7.1.3. Build Pegasus .. 78
7.1.4. Install Pegasus ... 78
7.1.5. Build Ensemble Manager .. 79
7.1.6. Install Ensemble Manager... 80
7.1.7. Create the Ensemble Data Base (DB) ... 80
7.1.8. Edit the Ensemble configuration file .. 81
7.1.9. Edit Log4j.configuration file .. 81

7.2 Grid Services ... 82

 ii

7.2.1 Linux Headnode Installation .. 82
7.2.2 Linux Cluster Node Installation ... 89
7.2.3 Windows Node Installation .. 89

8. Interim Project Reports and Documentation Released ... 89
9. Conclusions ... 92
10. References .. 93
11. Acronyms ... 96

 iii

LIST OF FIGURES

Figure 1: SR Architecture .. 3
Figure 2: Middleware Services for the Workflow System ... 7
Figure 3: Stages During Workflow Generation ... 10
Figure 4: The representation of a Workflow to learn a model and then classify data. 13
Figure 5: A workflow to learn a model to predict weather ... 14
Figure 6: Structure of the DAG constructed by the Ensemble manager........................... 50
Figure 7: Workflows Demonstrated in December 2006 ... 60
Figure 8: Workflow Creation in SR-6 from Template to Instance to Execution 61
Figure 9: Example Workflow with Parallel Seed Creation ... 62
Figure 10 : Supporting Data Reuse Across Workflows ... 63
Figure 11: Tangram Testbed ... 72

LIST OF TABLES

Table 1: Representation of Abstract and Concrete Workflow Components 11
Table 2: Formal Representation of a Request .. 28
Table 3: Top-Level Algorithm for Automatic Template-Based Workflow Generation .. 31
Table 4: Algorithm for Seeding a Workflow Template with the Seed Given in the
Request .. 32
Table 5: Algorithm for Backward Sweep Through Workflow ... 33
Table 6: Algorithm for Backward Sweep through Components 34
Table 7: Algorithm for Binding Workflows by Selecting Input Data 35
Table 8: Algorithm for Forward Sweep Through Workflow ... 35
Table 9: Algorithm for Forward Sweep Through Components 37
Table 10: Algorithm for Estimating Workflow Performance Through the Workflow 38
Table 11: Algorithm for Estimating Workflow Performance Through Components 38
Table 12: Algorithm for Instantiating Workflows ... 39
Table 13: Summary of functions that need to be supported in the metadata services and
the component services to enable automatic workflow generation 41
Table 14: A Workflow Example in N3 Notation ... 43
Table 15: Example of Workflow Requests in N3 Notation .. 44
Table 16: Relevant Excerpts of a Seeded Workflow ... 44
Table 17: An Example Binding-Ready Workflow After the Backward Sweep 45
Table 18: Relevant Excerpts of an Example Bound Specialized Workflow 46
Table 19: A Workflow Instance After Workflow Instantiation 47
Table 20: Example Ground Workflow Generated from a Workflow Instance 48

 1

1. GOALS OF SYSTEM RESEARCH IN THE TANGRAM
PROGRAM

The vast quantities of data available on-line presents a tremendous opportunity for
organizations to perform large-scale data analysis and information extraction. Research in
machine learning and data mining continually produces new and improved algorithms
and data analysis capabilities such as feature selection, relational learning, event
detection, social networks analysis, and spatial clustering among others. However, the
performance of different algorithms varies widely as a function of the characteristics of
the data being processed. Furthermore, end-to-end analysis applications demonstrate that
algorithms often perform best in combination with others that may enrich the data or
prune the hypothesis space. The assembly of such end-to-end applications can take weeks
of: (1) manual data selection, integration, and conversions; (2) algorithm selection by
experts; (3) manual parameter adjustment of individual algorithms; and (4) manual
software integration and execution. Thus, while the composition of multiple algorithms to
achieve performance improvement has been shown to be worthwhile and possible in
principle, the cost of manually constructing these applications is prohibitive.

The goal of the System Research (SR) component of Tangram is to drastically
reduce the human effort required to configure and execute new workflows for data
analysis from weeks to minutes by eliminating the need for costly human monitoring and
intervention. This requires developing robust end-to-end data analysis systems to analyze
data from many distributed sources and with many different algorithms and analytical
tools. Customized data mining applications need to be automatically assembled by
drawing from a library of the best available algorithms. The system needs to assess the
computation required by the application and its priority, and execute it efficiently by
drawing on computing resources available for execution in a distributed environment.
Data providers (called data catalog or DC) may provide services to access data sources.
There can be many organizations playing the role of data providers, and as a result data
may be accessible in various catalogs that are in distributed remote locations. Other
organizations may provide algorithms, services, models, or implemented codes that can
process data and can be used as components of the workflow. We call them process
catalog or PC. These are typically distributed and provided by different organizations.
Therefore, an important requirement for workflow systems is that they must rely on
distributed services to access the data and algorithms necessary for data analysis. The
system needs to incorporate dynamically new algorithms, new data sources, and new
computing resources, and learn to adapt its behavior appropriately.

Our ultimate goal is to deliver these capabilities to thousands of users operating in
different organizations where data and other resources would be shared. The scale of the
computations required is daunting. Our goal is to develop a system that could serve an
organization of (on the order of) O(10^4) users, each issuing O(100) new and repeated
queries daily that may overlap with queries by others, while providing access to O(100)
data sources and databases ranging from O(10^9) to O(10^6) records, which are updated
almost daily. Such a system requires the ability to: (1) specify, coordinate and prioritize
large numbers of complex sequences of analysis steps; (2) scale the amount of processing
and storage so as to accommodate ever-increasing sources of data and algorithmic

 2

complexity; and (3) dynamically share data, computing, storage, and analysis resources
across communities of information providers, service providers, and users.

The SR team has extensive experience helping scientific communities move from
manually intensive and limited settings to distributed computation environments in which
complex large-scale applications that compete for shared resources are managed,
optimized, executed, and recorded. Earth scientists, physicists, biologists, and
astronomers, among others, are able to routinely exercise complex data processing of
unprecedented scale with drastically reduced effort and increased computation, compared
to capabilities they had a decade ago. We structure these applications as workflows
described in high-level, declarative notations, and comprising hundreds of steps and
processing large quantities of data that comes from multiple, distributed data sources. We
use grid computing infrastructure to manage the execution of large numbers of concurrent
workflows on shared distributed resources. For this program, we applied these
technologies to bring the power of unprecedented scale and synthesis to data analysis
problems.

Our approach combines three central ideas:

1. Workflows as first class citizens, with rich representations of algorithmic
requirements and data products so they can be automatically assembled and
executed to respond to user-supplied queries.

2. Semantic representations to enable automatic generation of complex workflows
and systematic management of many workflow candidates.

3. Grid computing to manage the high-performance execution of many workflows,
in distributed cross-organization environments.

2. ARCHITECTURE OF THE WORKFLOW SYSTEM

The SR workflow system is an extension of the existing Wings/Pegasus workflow
system. Major extensions under this program include a Workflow Generation system for
fully automatic algorithm and data selection, and an Ensemble Manager for dynamic
management of concurrent workflow generation and execution.

Given a line of inquiry, one or more workflow requests are created. Each workflow
request contains a description of desired workflow data products and other constraints
such as deadlines for returning an answer. Workflow requests are submitted to the
workflow system. A given workflow request results in the execution of several
workflows, and the answer is returned from workflow execution. Because many such
workflow requests can be submitted to the workflow system concurrently, the workflow
system needs to prioritize these requests and assign resources accordingly. The details of
workflow generation and execution steps are recorded and are available for inspection
after execution.

 3

2.1 Major Components of the Workflow System

Figure 1: SR Architecture

Figure 1 shows the different components of the workflow system in different stages.
Major components of the Workflow System are: 1) Workflow Generation and Execution
System 2) Ensemble Manager and 3) Workflow System Logging.

The Workflow Generation and Execution System was developed as an extension of
the Wings/Pegasus workflow system. It includes steps for data and algorithm selection,
workflow evaluation and ranking, and finally workflow mapping and execution. APIs to
DC (data catalog) and PC (process catalog) have evolved from simple basic versions to
extended ones that are used for the System Evaluation at 18 months (i.e., SE-18
evaluation).

The Ensemble Manager (EM) component of the SR system is responsible for
supporting the creation and the execution of multiple workflows at the same time.

 4

Current workflow systems allow only sequential or uncoordinated creation and execution
of a single workflow. The Ensemble Manager that we developed coordinates and
efficiently handles planning and executing 100’s to 1000’s of workflows simultaneously
on the Grid. The EM manages sets of workflows, with each set specified as a workflow
ensemble. A workflow ensemble may, for example, contain the pool of candidate
workflows being considered for a given step in the workflow generation process. The EM
is invoked to perform on workflow ensembles any of the generation, planning, and
execution steps of the workflow generation processes.

The Workflow System Logs contains records of the workflow generation and
execution process within the SR system. The Workflow System Logs are being used by
System Evaluation Architecture (SEA) and other teams. SEA is using the Workflow
System Logs to retrieve records of the system's performance for a given workflow
request, as well as records of the workflow generation and execution process that can be
audited and analyzed. PC is using the Workflow System Logs to learn performance
characteristics based on workflow execution data. Many details are available about the
Workflow System Logs, including examples and ontologies, as described in Section 6.2.

SR has developed a set of new capabilities for our own Grid called “TanGrid”
support, software deployment, and SEA Site Catalog, including providing probes to
gather TanGrid site information and generate a dynamic site catalog.

The query manager, template library, and the components for end user interaction
were considered as post SE-18 activities.

2.2 The Wings/Pegasus Workflow System

The Wings/Pegasus workflow system was originally developed under several National
Science Foundation grants and has been used in several large-scale distributed scientific
applications [Wings 2008; Pegasus 2008; Deelman et al., 2003; Deelman et al., 2005;
Deelman et al., 2006; Gil et al., 2005; Gil, 2006; Gil et al., 2006; Gil et al., 2007; Kim et
al., 2007; Kim et al., 2006]. It is the basis for the SR Workflow System, which is
extending Wings/Pegasus with new capabilities and integration requirements of this
program. We summarize here briefly the Wings/Pegasus Workflow System.

Wings uses ontology-based descriptions of software components and data sources to
generate a workflow. It includes a workflow template editor that allows a user to define
useful and reusable combinations of components and their dataflow. Wings focuses on
the domain-dependent aspects of the workflow, but not in execution-level concerns.
Wings takes the user’s workflow requirements and generates a high-level workflow for
Pegasus.

Pegasus generates executable workflows by assigning execution resources to the
computations in the workflow. Pegasus also reduces the workflow execution time by
eliminating unnecessary computations whose results already exist and can be reused, and
reorganizing the structure of the workflow to minimize job queuing time and data
movements. It then submits the workflows to the grid for execution and monitors their
status and repairs routine low-level execution failures.

 5

To support the creation and validation of very large workflows, Wings/Pegasus takes
an approach that considers three stages for workflow creation, where each stage
corresponds to a different level of abstraction, and where a new type of information is
being added to the workflow. Wings supports the first two layers, while Pegasus supports
the third.

The first layer of workflow creation defines workflow templates that are data- and
execution-independent specifications of computations. Workflow templates express
repetitive computational structures in a compact manner and identify the types of
components to be invoked and the data flow among them. A workflow template is an
abstract specification of a workflow, with a set of nodes and links where each node is a
placeholder for a component or component collections (for iterative execution of a
program over a file collection), and each link represents how the input and output
parameters are connected. The nature of the components constrains the type of data that
the workflow is designed to process, but the specific data to be used are not described in
the template. A workflow template can be shared and reused among users performing the
same type of analysis.

The second layer of workflow creation uses workflow templates as a starting point to
create workflow instances that are execution-independent. Workflow instances specify
the input data needed for an analysis in addition to the application components to be used
and the data flow among them. A workflow instance can be created by selecting a
workflow template that describes the desired type of analysis and binding its data
descriptions to specific data to be used. While a workflow instance logically identifies the
full analysis, it does not include execution details such as the physical replicas or
resources to be used. That is, the same workflow instance can be mapped into different
executable workflows that generate exactly the same results but use different resources
available in alternative execution environments.

The third and final layer of workflow creation maps workflow instances onto
executable workflows. Executable workflows are created by taking workflow instances
and assigning actual resources that exist in the execution environment and reassigning
them dynamically as the execution unfolds. Executable workflows fully specify the
resources available in the execution environment (e.g., physical replicas, sites and hosts,
and service instances) that should be used for execution. This is the stage done by
Pegasus.

Wings implements the approach outlined above taking a workflow template and
initial input file descriptions, and creating a workflow instance called DAX (DAG XML
description). Pegasus transforms a DAX into an executable workflow through a mapping
that assigns tasks to available grid resources for execution. The details on the
representation and the workflow reasoning are reported in [Kim et al., 2006; Gil et al.,
2006; Deelman et al., 2004].

Details about how workflows are composed and executed can be found in the
Wings/Pegasus Provenance Challenge Site [WingsPegasus 2007]. A detailed example
shows how a workflow is created with Wings and Pegasus and includes pointers to the
ontologies, component models, and metadata representations for a workflow template, a
workflow instance, a DAX, and an executable workflow.

 6

The Wings/Pegasus workflow system was used to conduct the SR-6 demonstration,
six months into the program.

2.3 Middleware Services Used by the Workflow System

The Workflow System uses the following middleware services shown in Figure 2.

• Condor Batch System: Condor is used on the Submit node
(http://cs.wisc.edu/condor) by the Ensemble Manager to co-ordinate the
generation, planning, and execution of multiple requests and workflows across the
various nodes of the TanGrid.

• Globus GRAM2 Gatekeeper: The Globus Gram2 Gatekeeper and batch

scheduler specific jobmanagers (jobmanager-condor or jobmanager-pbss) from
the Globus Toolkit (http://www.globus.org) are installed on the head nodes of the
cluster for allowing job submission from remote machines to the local batch
scheduler on the cluster.

• Globus Gridftp Server: The Gridftp server from the Globus Toolkit is installed

on the head node of a cluster. This server enables high speed and efficient data
transfers of large datastets across the TanGrid. This service is used for any kind of
data transfer required for execution of the workflows.

• Local Batch System: Condor or batch systems are installed on the cluster nodes

to allow job scheduling within the cluster. These batch systems enable sharing of
the resources by multiple users and support prioritization of jobs, wall-time, etc.

• Allegro Graph Server: Franz’s Allegro Lisp and Allegro Graph Server products

are used for storing the data in triple form in the Allegro Graph Knowledge Base.

• MySQL Database: A MySQL relational database management system is used on
the Tangrid to store status information generated while executing the Workflows
via the Ensemble Manager. Also the MySQL Database maintains a Pattern
Registry that is used by Pegasus to retrieve locations of patterns to be used for the
workflows.

• Ganglia Monitoring: Ganglia Monitoring probes are installed on each node on

the cluster which publish monitoring information like load, cpu usage, memory
usage, network usage and other such statistics including historical information.
This information is aggregated for each cluster and published to a central
publishing site at http://wind.isi.edu/ganglia.

http://cs.wisc.edu/condor
http://www.globus.org
http://wind.isi.edu/ganglia

 7

• Nagios Monitoring and Testing: Nagios Monitoring and Testing framework is
installed on one of the TanGrid Nodes. Its function is to run various testing probes
repeatedly at a fixed interval in order to test the health of the TanGrid nodes and
services. The Nagios monitoring page can be seen at
https://artemis.stdc.com/nagios2/

Figure 2: Middleware Services for the Workflow System

2.4 Workflow Execution Facilities

SR has provided two clusters at Information Sciences Institute (ISI) to be used as
Workflow Execution Facilities. Additionally each group has a Submit node installed at
their site. The two clusters at ISI used for execution are described below.

VIZ Cluster:

• 1 Linux Head Node
o Dual CPU, Dual Core Xeon 2.4Ghz (32 bit)
o 2GB Memory
o Gigabit Ethernet
o 150Gbs of shared storage
o Debian 3.1 Linux
o PBS Batch System

• 8 Linux Cluster Nodes each with
o Dual CPU, Dual Core Xeon 2.4Ghz (32 bit)

https://artemis.stdc.com/nagios2/

 8

o 2GB Memory
o Gigabit Ethernet
o 150Gbs of shared storage
o Debian 3.1 Linux

WIND Cluster:

• 1 Linux Head Node
o Dual CPU, Dual Core Xeon 2.3 Ghz (64 bit)
o 8 GB Memory
o Gig Ethernet
o 7Tb of shared storage
o Fedora Core 7
o Condor Batch System

• 5 Linux Cluster Node
o Dual CPU, Dual Core Xeon 2.13 Ghz (64 bit)
o 4 GB Memory
o Gig Ethernet
o 7Tb of shared storage
o Fedora Core 7

• 1 Windows Cluster Node
o Pentium 4 2 Ghz (32 bit)
o 1 GB Memory
o 100Mbps Ethernet
o Windows Xp SP2

3. RESEARCH RESULTS

SR’s work under this program covered three major research areas: automatic workflow
generation, workflow ranking, and managing execution of multiple workflows.

3.1 Automatic Workflow Generation

Computational workflows are a powerful paradigm to represent and manage complex
applications, particularly in large-scale distributed data analysis. Workflows represent
application components that result in individual computations as well as their
interdependencies in terms of data flow. Workflow systems use these representations to
manage various aspects of workflow creation and execution for users, such as the
automatic assignment of execution resources.

SR’s research on workflow generation provides an approach to automating a new
aspect of the process: the selection of application components and data sources. We
present a formalization of the problem and an algorithm that elaborates the high-level
template into a set of fully ground workflows with specific choices of data sources and
codes to be used so that they can be submitted for mapping and execution. The algorithm
starts from a user-specified request that includes a high-level workflow template and any

 9

additional constraints on results or data sources. It searches through the space of possible
candidate workflows by creating increasingly more specialized versions of the original
template and eliminating candidates that violate constraints as components and data
sources are selected.

Figure 3 shows an overview of the distinct stages during workflow generation. A
pool of workflow candidates are formed from the initial request. Each stage adds
increasingly more detail to each candidate workflow until they are ready to be submitted
to the workflow mapping and execution engine. In this process candidate workflows can
be added or eliminated. If at any point there are no workflow candidates remaining, the
algorithm ends returning an empty result.

The initial request is assumed to contain template/seed pairs that are each well-
formed and unified with the template variables. In the first stage, a seeded workflow is
created from each template/seed pair by merging the seed with the workflow template
constraints. These seeded workflows are considered to be the initial pool of candidate
workflows. The next stage propagates constraints from the workflow outputs to the
workflow inputs to create binding-ready workflows. Next, input data sources that satisfy
the constraints imposed by the workflow are found to create a pool of candidate bound
workflows. In the next stage, the properties of input data sources are propagated through
each component, resulting in configured workflows. Finally, unique identifiers for
workflow data products are obtained to create workflow instances, and specific command
invocations are associated with each workflow component to create ground workflows.
Finally, the candidate workflows are ranked and the k-best candidates are submitted to
the workflow mapping and execution engine. The detailed individual steps are described
in Section 3.1.3.

Our algorithms assume a distributed architecture where data and process (component)
catalogs are separate from the workflow system. To function in such a distributed
architecture, the algorithm explicitly poses queries to external catalogs, and therefore any
reasoning regarding data or component properties is not assumed to occur within the
workflow system. To illustrate our approach, for simplicity, we use workflows
composed of machine learning algorithms as components from the well-known Weka
library and datasets from the widely-used Irvine repository. We also show our
implementation using the W3C Web Ontology Language (OWL) and associated
reasoners to implement the workflow system as well as the data and process catalogs.
This research demonstrates the use of artificial intelligence techniques to support the
kinds of automation envisioned by the intelligence community for large-scale distributed
data analysis.

3.1.1 Data, Components, Workflows, and Workflow Requests: Requirements and
Examples

Data

Data objects have metadata properties, which are used to describe useful features of the
data. An example metadata property is the size of a datasets, and whether the data is
continuous or discrete. Metadata properties can specify the type of the data, for example

 10

whether they are instances or models, and for models whether they are a decision tree
model or a Bayes model.

__

__

Seed workflow from request

unified well-formed request

Find input data requirements

seeded workflows

Data source selection

binding-ready workflows

Parameter selection

bound workflows

Workflow ranking

specialized configured elaborated workflows

Workflow instantiation

specialized configured elaborated workflows

Workflow grounding

Workflow instances

ground workflows

Figure 3: Stages During Workflow Generation

 11

Table 1: Representation of Abstract and Concrete Workflow Components
(a) Abstract Component

Component ID: DecTreeModeler
 is Abstract
Input: d: Dataset
 hasSize s:Size
Params: i: ClassIndex
 j: maxJavaHeapSize
 j <- 256x rem(s/1000)
Output: o: Model is DecTree

(b) Concrete Components

Component ID: ID3-Modeler Component ID: Lmt-Modeler
 is DecTreeModeler is DecTreeModeler
 is Concrete is Concrete
Input: d: Dataset is Discrete Input: d: Dataset is NoMissingVals
Params: i: ClassIndex Params: i: ClassIndex
 j: maxJavaHeapSize j: maxJavaHeapSize
Output: o: DecTree-Model Output: o: DecTree-Model

Concrete components correspond to executable codes, abstract components

correspond to classes of components with common general properties. An
important requirement is the ability to describe new workflow data products since
we need to be able to refer to data objects that do not yet exist and that will only
exist once the workflow is executed. In addition, we need to anticipate the metadata
properties of those objects. We refer to this as the projected metadata for a data
object. For example, if the training dataset is of a particular kind or domain, such as
weather data, then we can state that the model learned is also for weather data and
that the classifier is expected to operate on test data that are also weather data. To
support this, we need to be able to state not only that the domain of the training data
(e.g., weather) must be the same as the domain for the given test data, but also to
state or infer that the learned model is of that same domain (e.g., also weather).
Notice that the projected metadata for a data object may be different than the actual
metadata obtained once the data object is created. For example, we can anticipate
that a learned model for a training set of 1,000 instances will have 25 rules, but the
actual learned model may end up containing exactly 26 rules. The data catalogs
need to handle the fact that these new projected data products may never
materialize, either because the workflow will not be selected for execution (in favor
of other alternatives) or because the execution of the workflow may fail.

Representing workflows requires being able to represent statements about data

objects that include the ability to:
1) refer to the data objects that will be used as input data,
2) attach properties to those data objects,
3) state relations among properties of different data objects,
4) refer to new workflow data products and their properties

Components

Components often require representing properties of their input or output data. For
example, that a component that discretizes a dataset has as output a dataset that is discrete
(instead of continuous data). Components have argument identifiers that enable the
workflow system to refer to particular arguments of the component. For example, the
component ID3-Modeler has an input dataset whose identifier is “d”.

Components in a component catalog may be abstract or concrete. Concrete
components model pieces of software that can actually be executed while abstract

 12

components are descriptions of the common features of a set of concrete components, in
a similar sense to the way an abstract class in object-oriented programming gathers the
commonalities of its subclasses. Table 1(a) shows an example of an abstract component,
which represents all common properties of decision tree modelers such as the output is in
the form of a decision tree. Table 1(b) shows two examples of concrete components.
The ID3-Modeler requires input data that are discrete, while the LMT-Modeler requires the
training examples used as input to have no missing values for their features. The abstract
component illustrates how the value of a metadata property of an input dataset (s) is used
to set the value of a parameter (h).

We have the following requirements for representing components:
1) represent input data, parameters, and output data in each with a unique argument

identifier,
2) represent constraints on the values that arguments can take, including type,
3) represent constraints across argument values,
4) represent classes of components based on common properties, and
5) ability to generate an appropriate invocation command.

Workflows

Workflows have complementary representations of structure and constraints. The
structure of a workflow reflects the dataflow among components, while the constraints
reflect interactions among components and datasets. We explain now both aspects of the
representation in more detail.

The structure of a workflow is specified as a set of nodes, each corresponding to a
component, and a set of links that reflect the dataflow across components. For simplicity,
we use links to specify input and output data and refer to them as input and output links,
with an empty origin node and an empty destination node respectively. Similarly, we use
parameter links for parameters, and give them an empty origin node. All other links are
in-out links and include both an origin and a destination node.

Figure 4 shows a representation of a workflow. The dotted ovals and the dotted lines
represent workflow nodes and links respectively. The ModelerThenClassifier workflow
consists of two nodes (modelerNode with Modeler component and ClassifierNode with
Classifier component), two input links (for modelerTrainingData and classifierInputData), two
parameter links (for javaMaxHeapSize and modelerClassIndex), one in-out link (for
outputModel and classifierInputModel), and one output link (for classifierOutput). In this
workflow, there are several data variables shown. One is TrainingDataVariable, which
refers to the input data that will be used as training data and can be bound to any data sets
available. Another data variable is ModelDataVariable, which refers to the data product
generated after the Modeler component will be executed. The workflow in the figure is
variabilized, and its input data variables can be bound to many possible combinations of
data inputs. Links specify which argument identifier of the component is associated with
the link. In Figure 4, the argument identifiers are shown next to the solid arrows inside
the nodes. For example, the learned model corresponds to the “m” argument id of the
Classifier component. We include here a parameter that is used in the Weka
implementation and that specifies the allocation of memory to be used (indicated with a
“j” argument identifier on both components) and should be set in proportion to the size of

 13

the input data sets. We will use this parameter in later sections to illustrate how the
components can be automatically configured during workflow generation.
__
Workflow Structure:

Workflow Constraints:

TrainingDataVariable ≠ TestDataVariable
Domain of TrainingDataVariable = Domain of TestDataVariable

 The nodes are shown in dashed ovals, links are shown in dotted arrows. The top illustrates the
representation of the structure of the workflow, the bottom shows the constraints of the workflow.

Modeler

d j

o

ModelerNode

i

TrainingDataVariable ClassIndexParameterVar

maxJavaHeapSizeModelerParameterVar

Classifier

d j

o

ClassifierNode

m

TestDataVariable ModelDataVariable

maxJavaHeapSizeClassifierParameterVar

ClassificationDataVariable

Legend

node

Variable

Link

ArgumentID

component

Figure 4: The representation of a Workflow to learn a model and then classify data.

 14

Workflow Structure:

Workflow Constraints:

TestDataVariable has Domain = weather
Training DataVariable = Weather-SM-2007-Data.csv
SamplingIntervalParameterVar = 20
ClassIndexParameterVar = 5
TrainingDataVariable ≠ TestDataVariable
Domain of TrainingDataVariable = Domain of TestDataVariable

The training data is sampled first at a set rate. The workflow constraints specify bindings of data
variables as well as parameter settings. Workflow constraints also express a restriction on the test
dataset that it contains weather data, which avoids incorrect use of the workflow with other kinds
of data.

Weather-SM-2007-Data. csv

ID3-Modeler
d j

o
ModelerNode

i

maxJavaHeapSizeModelerParameterVar

ID3-Classifier
d j

o
ClassifierNode

m

TestDataVariable

maxJavaHeapSizeClassifierParameterVar

ClassificationDataVariable

TrainingDataVariable

ClassIndexParameterVar
5

ModelDataVariable

SystematicSample
d

o
SamplingNode

k

SamplingIntervalParameterVar
20

TrainingSampleDataVariable

Legend

node

Variable

Link

ArgumentID

component

Data object

Figure 5: A workflow to learn a model to predict weather

 15

In our work, the structure of a workflow is constrained to be a directed acyclic graph

(DAG). This is a very simple structure that we have found very useful in many fronts:
including hiding programming constructs from users, facilitating reasoning about
workflows (in particular automatic workflow generation), and last but not least recovery
of execution when a job fails in the middle of the workflow. Many workflow languages
depart from this basic structure and enable constructs such as conditionals and iterations
through global variables. Using DAGs, we are able to support simple forms of iteration
over data collections, as well as conditional execution based on data types [Gil et al 07a].
We have found this structure to be very manageable and to cover what was needed for a
wide range of applications.

Figure 5 shows another example of a workflow customized to learn to predict weather
data. This is a workflow that has data objects assigned to some of the data variables and
values assigned to some of the parameters, both done through the workflow constraints.
This workflow also illustrates how constraints represent additional metadata properties of
the input data. In this case, a constraint indicates that the domain of the test dataset used
must be weather. This constraint will avoid the incorrect use of this workflow to make
predictions over non-weather data.

The representation of the structure of the workflow is essentially syntactic in nature,
as it is concerned with having a complete specification of the direction of the dataflow for
all the inputs and outputs of the components. The representation of the constraints is
semantic in nature, and is concerned with having a consistent specification of the nature
of the data exchanged among components through the dataflow.

In summary, to represent workflows we have the following requirements:
1) represent dataflow across components,
2) represent data variables that are generic placeholders for actual datasets, so we can
have reusable workflow templates,
3) represent constraints on data variables,
4) represent constraints across data variables, and
5) represent different degrees of generality in the workflows, including bindings for input
datasets and values for parameters.

Workflow Requests

Our goal is to automatically generate responses for a variety of requests from users by
generating and executing workflows that satisfy the requests. Users may specify a
variety of criteria in the requests, such as:

• Functional properties: Users often want to use workflows based on the nature of
the computations performed or the desired data products. These include:

o component-centered properties that refer to the kinds of computations
performed by the workflow components

 16

o data-centered properties that refer to desired data products, or that specify
that a certain type of data of interest to the user must be used in the
workflow.

Example of output data properties: Create a Naïve Bayes model of labor data.
Example of input data properties: Classify iris data using a naive-bayes model with three classification classes

and created from at least 500 instances.
Example of component properties: Create a model of labor data using ID3.
Example of component properties: Create a model of labor data with no sampling steps in the workflow (i.e.,

using the complete training data set).
• Structural properties: Users may provide constraints on the structural composition

of the workflow concerning the relative ordering of steps. For example, a user may
seek a workflow that performs data aggregation on a collection of datasets before
performing clustering operations.

Example: Sample soybean data and then create a Naïve Bayes model.
Example: Use ModelThenClassify workflow with soybean data.

• Non-functional properties: These properties express user requirements regarding
workflow performance and other costs. We highlight two here:

o Execution time: A desired turnaround time for obtaining results.
o Result quality: A threshold of quality or accuracy measured in some

domain-relevant metric.
Because some of these requirements may be in conflict, users may state additional
combination functions or preferences. For example, there is typically a tradeoff
between execution time and result quality, where shorter time often implies a
lower quality results. A combination function may be expressed in the request
when both time and quality matter.

Example: Create a model of soybean data with maximum accuracy.
Example: Classify iris data and minimize the response time.

• Resource properties: Users may have specific requirements about the execution
resources to be used in executing the workflow. For example, for a workflow
designed to compare the performance of a set of algorithms the user may request
that all the algorithms may be executed on the same target architecture, or that the
datasets used should be those existing at specific locations. Users may also
request that specific resources should not be used, such as datasets generated by
prior workflow executions or datasets that have not been updated for some period
of time.

• Cumulative properties: These are properties of workflows that are derived through
usage. Users may prefer to use workflows that are most frequently used by a user
group, or more popular for a given function.

Example: Create a model for soybean data using the most popular decision tree modeler.
• Comparative properties: Properties that are derived by comparing across possible

candidate workflows. These can be used as ranking functions that drive the
selection of workflows that have higher ranking.

Example: Create a model for soybean data with minimum description length.
In our work, users always specify a workflow template to be used in combination

with a seed that specifies additional constraints. The seed can specify constraints on the
inputs, outputs or intermediate data variables, as well as requirements on particular

 17

components, data objects or parameter values to be used. The workflow template
essentially specifies functional or structural requirements that users have. In general,
scientific applications and data analysis applications are run with a specific workflow
structure or template in mind [Gil 06].

An example of a request is one to create a classification of a weather data object (i.e.
the domain of the classifierOutput is weather) using the ModelerThenClassifier workflow
(shown in Figure 4), with a value of 5 for the “i” parameter of the Modeler step.

If a workflow request did not include a workflow template, the seed can be used to
search for relevant workflows in the library that could be used to accomplish the request.
Matching requests and workflow templates is a unification problem [Baader and
Narendran 01]. There is a large body of work on matching in the case-based reasoning
literature [Ashley and Aleven 97; Bergmann and Stahl 98; Champin and Solnon 03;
Forbus et al 94] as well as in matching in first-order and in description logic [Li and
Horrocks 03; Baader et al 05; Hull et al 06]. Graph matching techniques have been used
to retrieve workflows based on structural properties [Goderis et al 06]. End users,
however, will most often formulate their requests based on domain-relevant features of
the workflow rather than referring to the implementation details of the software artifacts
described in our current workflow representations. Therefore, ideally each workflow and
data product would be described in terms of domain-relevant models in addition to
software-level descriptions.

Another alternative to responding to a workflow request that does not include a
template is to use a generative search algorithm to generate a workflow by selecting one
component at a time using the seed as a goal statement [Blythe et al 04a; Blythe et al
04b]. However, those approaches require very detailed models of the components in
order to support composition. We assume that a workflow request is formed by a
workflow template and a seed that specifies additional constraints.

In summary, in order to satisfy the requirements in user requests, we need to be able
to:

1) represent properties of desired input and output data,
2) merge the retrieved templates with the requirements expressed in the request , and
3) propagate the effects that the requirements expressed in the request pose on other

components and datasets of the workflows being considered.

3.1.2 Formalization

This section shows a formalization of our framework to satisfy the above requirements.
The formalization describes how the workflow system can model data, components, and
workflows. We also show the basic functions that the workflow system needs in order to
access external data, component, and workflow catalogs. Although our own
implementation uses a particular representation formalism, we use a more general
formalization here using algebraic specification [Liskov and Guttag 86]. We show later
our implementation of this formalization.

 18

Data and Data Catalogs: Formalization

To refer to data objects relevant to a workflow we use the term data entities. Data
entities can be an existing initial dataset, a workflow data variable, a component
parameter, and a specific workflow data product.

We use the term data object description (DOD) to refer to a set of metadata
annotations that describe the properties of a given data object. DODs for input data
variables effectively constrain the possible input data that can be used to bind the data
variables standing for data objects. DODs for component parameters can be used to
constrain the values that the parameter can take, and to specify the value of a component
parameter.

In our work we use a particular representation formalism (first-order logic).
However, we wish to make our framework very general and applicable to alternative
formalisms. Therefore, without actually committing to any formalism for DODs, we
assume that the chosen formalism allows writing literal annotations and literal relational
annotations as defined below.

Formally, we assume:
• E as the set of data entities in the workflow,
• P as the set of metadata properties,
• τ(p) is the set of possible values for a metadata property p∈ P
• V as the set of possible values of the component parameters
• R as the set of relations between pairs of property values,

Given E, P, and R, we assume that the DOD formalism allows expressing:
— literal DODs to specify the value of a metadata property for a given object as:

〈 e, p, v 〉
where e ∈ E, p ∈ P, v ∈ τ(p).
Example: For the workflow shown in Figure 5, <TestDataVariable, has Domain, weather>

— literal relational DODs to specify a relation between the values of two properties
of the same or different data objects as:
〈 r, e1, [p11, ... , p1n], e2, [p21, ... , p2m] 〉
where e1, e2 ∈ E, p11, ... , p1n, p21, ... , p2m ∈ P, r ∈ R, and n, m ≥ 1
Representing that relation r holds between the value at the end of the property
chain p11, ... , p1n starting in e1 and the value at the end of the property chain p21,
... , p2m starting in e2. Formally:
∃ x1, ... , xn, y1, ..., ym such that
〈 e1, p11, x1 〉 ∧ ... ∧ 〈 xn-1, p1n, xn 〉 ∧ 〈 e2, p21, y1 〉 ∧ ... ∧ 〈 ym-1, p2m, ym 〉 and
r(xn, ym)

 19

Example: To add a restriction in the workflow in Figure 5 that it can only be used to make predictions with
weather data that is from the same county as the training data, we can state:

 <equals, TestDataVariable, [has-area, has-county], TrainingDataVariable, [has-area, has-county]>

 which represents that:
< TestDataVariable, has-area, A1>
<A1, has-county, C1>
< TrainingDataVariable has-area A2>
<A2, has-county, C2>
<C1, equals, C2>

With these representations for DODs, we can represent workflow constraints. For

example, the workflow constraints shown in Figure 5 can be expressed as the set of
DODs:

 M3= {<TestDataVariable, hasDomain, weather>
 <TrainingDataVariable, has-value, Weather-SM-2007-Data >
 < SamplingIntervalParameterVar, has-value, 20 >

 < ClassIndexParameterVar, has-value, 5>
 <not-equal, TrainingDataVariable, [has-value], TestDataVariable, [has-value]>}

We denote as M(E) a set of metadata annotations that only refer to entities in the set E

and as E(M) the set of entities referred in the set M of annotations. We now describe the
functions that implement this notation. We assume that the formalism for metadata
allows us to build a function that implements M(E) to retrieve the subset of DODs that
only refer to a set of given entities E, and a function that implements E(M) as follows:

— entity-DODs: E M → M
which returns a subset of the given set of DODs that only refer to the given set of
entities. Formally, if MA is a set of DODs:
entity-DODs(V, MA) ⊆ MA, and E(entity-DODs(V, MA)) ⊆ V

Example: entity-DODs ({TestDataVariable TrainingDataVariable}, M3) ≡
 {<TestDataVariable, hasDomain, weather>

 <TrainingDataVariable, has-value, Weather-SM-2007-Data >
 <not-equal, TrainingDataVariable, [has-value], TestDataVariable, [has-value]>}

— get-entities-in-DODs: M → E

Example: get-entities-in-DODs(M3) ≡ { TestDataVariable TrainingDataVariable
 SamplingIntervalParameterVar ClassIndexParameterVar }

Note that M and E are the types of all DODs and all entities respectively, and V and
MA are the values for a specific call to the function.

With these definitions, we can now formalize the functions that a data catalog must
be able to support. A data catalog must include functions to retrieve data objects given
their DODs. In addition, it must provide a function to combine sets of DODs and to warn
when they are not possible to combine (we will illustrate the need for this in the
workflow generation algorithm below).

 20

Given a set D of data object identifiers contained in the data catalog DC, and denoting
as Vars a set of workflow data variables that can be annotated with DODs, we can define
the following functions:

— obtain-DODs: D → M
Return as a DOD all the metadata properties and values of the given data object
identifier.

— assign-identifier: M → D
Assigns a unique identifier based on a given set of metadata properties and values.

— assert-predicted-DODs: DC M D → DC
Register in the data catalog all the predicted metadata properties and values of the
given data object identifier.

— find-data-objects: M(Vars) → { { 〈 Vars × D 〉 } }
Given an input set of DODs for several data variables, return a (possibly empty)
set of data objects for all the variables in the input DODs that are consistent with
the DODs. Each tuple of the form 〈 Vars × D 〉 is a binding for a workflow data
variable, where a variable is bound to a data object identifier.

— combine-DODs: M(Vars) M(Vars) → M(Vars)
Return a set of DODs which combines the metadata properties of two given sets,
all of them on a given set of variables.
In order to be valid, an invocation to combine-DODs must verify that the sets are
consistent.

Components and Component Catalogs: Formalization

In order to support the workflow selection and execution process, a component catalog
may include different functions to extract knowledge about the components out of the
catalog.

We assume:
• a set C of components in the catalog. We refer to AC and CC as the disjoint

subsets of C for abstract and concrete components respectively.
• a set I of unique identifiers for each argument of the components (input data, input

parameters, and output data)

We can define the following basic functions for the component catalog:
— inputs: C → I

Return the identifiers for the input data objects of a component.
— parameters: C → I

Return the identifiers for the parameters of a component.
— outputs: C → I

Return the identifiers for the outputs of a component.
— args: We denote as args(c) the set of arguments of a component c ∈ C:

 21

args(c) ≡ inputs(c) ∪ parameters(c) ∪ outputs(c)
— invocation-command: CC 〈 D × ... × D 〉 〈 V × ... × V 〉 → String

Return the invocation command for a concrete component, given the values (data
object identifiers) for its inputs and the values for its parameters.

When the component library supports these functions for a component, and the
invocation command results in a successful invocation and execution of the component,
we consider the library to contain a basic component encapsulation. Supporting this
basic encapsulation of the underlying code does not require a component library to
include semantic constraints or properties of data or components.

When a component catalog includes both abstract and concrete components, it
needs to support the following functions:

— is-concrete: C → Bool
Determine whether a component c is abstract or concrete.

— specialize: AC M(I) → { C }
Return a (possibly empty) set of abstract or concrete components that can
specialize a given abstract component using a given set of DODs on the abstract
component arguments. We assume that there is a one-to-one mapping between the
arguments of each of the concrete components returned and the arguments of the
abstract one. When this is not the case, there must be provisions for extending the
workflow to account for the additional arguments, possibly to link them to data
variables in the workflow, and possibly to add workflow components to the
workflow to generate some of the additional arguments.
In order to be valid, an invocation of specialize(c, M) must verify that DODs in M
only refer to the arguments of c: E(M) ⊆ args(c).

— specialize-to-concrete: AC M(I) → { CC }

Similar to specialize but returns only concrete components rather than subclasses.

The next functions support the automatic setting of parameters for a given
component. When the component library supports these functions, we refer to the
component as self-configurable. The functions are defined as follows:

— is-configurable: C M(I) → Bool
Determine whether the parameter values for the component can be obtained from
the component catalog given a set of DODs on the component arguments. Notice
that this does not set the values of any parameters, it simply checks that they can
be set by the component catalog.

— configure: C M(I) → { 〈 V × ... × V 〉 }
Return a set of tuples, each tuple specifying values for all the parameters of a
component c given a set of DODs on the component arguments (inputs, outputs
and parameters).
In order to be valid, an invocation of configure(c, M) must first verify that:

• DODs in M only refer to the arguments of c: E(M) ⊆ args(c), and
• is-configurable(c, M) returns true.

 22

— is-configured: C M(I) → Bool
Determine whether a component c is fully configurable based on a given set of
DODs on the component arguments.

We define two additional functions that component catalogs can provide in order to

support workflow generation:
— find-DODs-given-output-requirements: CC M(I) → { M(I) }

Return additional metadata properties on the concrete component arguments using
the given DODs.
In order to be valid, an invocation find-DODs-given-output-requirements (c, M)
must comply with:

 DODs in M only refer to the arguments of c:
E(M) ⊆ args(c)

 M includes some annotations on the outputs of c:
E(M) ∩ outputs(c) ≠ ∅

Ex: find-DODs-given-output-requirements(ID3-Classifier,<ID3-Classifier-o hasDomain Weather>)
→ { < ID3-Classifier-d hasDomain Weather>}

— predict-DODs-given-input-requirements: CC M(I) → M(I)
Return additional metadata properties on the concrete component arguments using
the given DODs.
In order to be valid, an invocation predict-DODs-given-input-requirements (c, M)
must comply with:

 DODs in M only refer to the arguments of c:
E(M) ⊆ args(c)

 M includes some annotations on the inputs of c:
E(M) ∩ inputs(c) ≠ ∅

Ex: predict-DODs-given-input-requirements(ID3-Classifier,
 <ID3-Classifier-d has-value weather-2007-31-101501>)

 → {< ID3-Classifier-d number-of-instances 100>,
 < ID3-Classifier-j has-value “512M”>}

When a component library supports the first function for a given component, we refer
to the component as backward-enabled. The function is used to propagate through the
workflow structure any constraints required from the output data products. When the
second function is supported, we refer to the component as forward-enabled. This
function is used to propagate through the workflow structure any properties of the input
data. We also have functions to check whether the component representations in the
catalog support these capabilities as follows:

— is-backward-enabled: C → Bool
The function find-DODs-given-output-requirements is defined for the
component.

— is-forward-enabled: C → Bool

 23

The function predict-DODs-given-input-requirements is defined for the
component.

Finally, a function to estimate the performance of a component:

— estimate-performance: C M(I) 〈 V × ... × V 〉 A → T

Return estimated performance T as time of execution for the component for the
given metadata and parameter values. The performance is estimated for a given
reference architecture A.
In order to be valid, an invocation estimate-performance (c, M,v) must comply
with:

 DODs in M only refer to the arguments of c:
E(M) ⊆ args(c)

 M includes some annotations on the inputs of c:
E(M) ∩ inputs(c) ≠ ∅

 is-concrete(c) returns true
 is-configured(c, M) returns true

Later, we will show how all these functions are used during workflow generation.

Workflows

Given a component catalog which includes a set C of components, a data catalog with a
set D of data object identifiers, a set V of possible values for component parameters and a
set P of metadata properties, a workflow w is defined as a tuple of nodes, component to
node mappings, data variables, parameter variables, DODs on data and parameter
variables, data links, parameter links, data bindings, and parameter bindings. Formally, a
workflow is specified as a tuple:

〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉

where:
 Nw is the set of nodes in the workflow,
 σw is a mapping function that associate a component to a node:

σw : Nw → C
Note that different nodes in the workflow may have the same associated

component.
 DVw is the set of data variables in the workflow
 PVw is the set of parameter variables in the workflow.
 Mw, is DODs on the data and parameter variables of the workflow: E(Mw) ⊆

DVw ∪ PVw
 Lw, is the set of links in the workflow. A link l is represented as a tuple of the

form:

 24

〈 no, o, v, nd, i 〉
where no, nd ∈ Nw ∪ {⊥}, o ∈ outputs(σ(no)) ∪ {⊥}, v ∈ DVw ∪ PVw, and i

∈ inputs(σ(nd)) ∪ {⊥}.
We refer to no as the origin and to nd as the destination.
An input link to the workflow is one without origin that connects a data

variable to an input argument of a component: 〈 ⊥, ⊥, v, nd, i 〉 v ∈ DVw, while
an output link is one without destination that connects an output argument to a
data variable: 〈 no, o, v, ⊥, ⊥ 〉 v ∈ DVw.

 PLw, is the set of parameter links in the workflow. A parameter link pl is
represented as a tuple of the form:

〈 pv, n, p 〉
where pv ∈ PVw, n ∈ Nw, and p ∈ parameters(σw(n)).

 DVBw is a, possibly empty, set of bindings of the data variables to data object
identifiers:

〈 dv, d 〉 ≡ 〈 dv, has-value, d 〉
where dv ∈ DVw, d ∈ D

 PVBw is a, possibly empty, set of bindings of the parameter variables to
values:

〈 pv, v 〉 ≡ 〈 pv, has-value, v 〉
pv ∈ PVw, v ∈ V

The parameter link indicates which parameter variable in the component corresponds

to the link. No values are set to parameters in parameter links, instead the values are set
through the parameter bindings.

Workflow catalogs should contain workflows that comply with the basic component
encapsulation requirements for all of its nodes’ components. That is, all the arguments
and argument identifiers specified in the workflow nodes and links have a one-to-one
correspondence with the arguments and argument identifiers defined for the nodes’
components. We refer to such workflows as well-formed workflows. This is a syntactic
property concerning the structure of the workflows, and does not concern the constraints
or properties that may be defined for data variables or data objects.

We define the following types of workflows:
— Specialized workflow:

A workflow which contains only concrete components.
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where

 ∀ c ∈ Cw : isConcrete(c)
where Cw denotes the set of components in the workflow:

Cw ≡ { c ∈ C | ∃ n ∈ Nw : σw(n) = c }

— Bound workflow:

 25

A workflow whose input data variables are bound to data objects identifiers
registered in the data catalog.
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where

 ∀ dv ∈ DVi that is an input data variable ∃ d ∈ D : 〈 dv, d 〉 ∈
DVBw

where DVi denotes the set of input data variables in the workflow:
DVi ≡ { dv ∈ DVw | ∃ n ∈ Nw : ∃ i ∈ I : 〈 ⊥, ⊥, dv, n, i 〉 ∈ Lw }

— Configured workflow:

A workflow where all the parameters of its components have been assigned
values.
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where:

 ∀ pv ∈ PVw : ∃ v ∈ V : 〈 pv, v 〉 ∈ PVBw

— Ground workflow:

A workflow where all the data variables in the workflow have been assigned data
object identifiers.
Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where:

 ∀ dv ∈ DVw : ∃ d ∈ D : 〈 dv, d 〉 ∈ DVBw

With these definitions at hand, we can make the following distinction:

— Workflow instance.
A specialized bound workflow which is also configured. A ground workflow is a
special case of workflow instance where all data variables are bound to data
objects with assigned identifiers.

— Workflow template.
Any workflow that is not a workflow instance.

The workflow in Figure 4 is not specialized, since both nodes contain abstract

components. It is partially bound, since it has a binding for the training data variable but
not for the test data variable. It is partially configured, since only some of its parameter
variables have been assigned values. This workflow is a workflow template, and we will
use it as a running example to show how our algorithms use it to create a workflow
instance by specializing, binding, and configuring it. The workflow in Figure 5 is
specialized, partially bound, and partially configured.

A workflow library containing reusable workflows can include any kind of workflow
template, whether they are fully or partially specialized, bound, or configured. Different
kinds of workflow templates can be reused for different purposes. For example, a fully
configured workflow can be reused to process different datasets, while a fully bound
workflow can be reused to explore alternative parameter settings.

In contrast with workflow templates, workflow instances are fully specified in terms
of data, parameters, and components to be used. Therefore, workflow instances can be

 26

submitted to a workflow mapping and execution engine to be mapped to available
execution resources and to be subsequently executed.

In order to be submitted to the workflow mapping and execution system, workflow
instances need to have unique data object identifiers for each new data product as well as
exact command line invocations for each component. The workflow mapping and
execution system does not need the DODs and other constraints that may be included in
the workflow as a result of its evolution from a workflow template to a workflow
instance. It only needs to have a unique identifier for each new dataset that will result
from the execution of the workflow, specific mention of codes to be executed for each
component, and an invocation command to invoke each component code. We refer to
these workflows as ground workflow instances, where only the basic structure of the
workflow is given and no data variables or metadata are included.

A workflow catalog can support analogous functions to component catalogs:

 is-configurable(workflow)
 configure(workflow)
 is-backward-enabled(workflow)
 find-DODs-given-output-requirements(workflow)
 is-forward-enabled(workflow)
 predict-DODs-given-input-requirements(workflow)
 estimate-performance(workflow)

The functions find-DODs-given-output-requirements and predict-DODs-given-input-
requirements can be used to generate requirements on inputs and predictive metadata on
outputs respectively at the workflow level, as an alternative to finding requirements
component by component as we will explain in detail later. Similarly to components, we
refer to the workflows in the workflow catalog as self-configurable, forward-enabled,
and backward-enabled when the corresponding functions are supported.

Later on, we will show how these functions can be used during workflow generation.

Workflow Requests: Formalization

We discussed earlier a broad range of requirements that users could provide to a
workflow system. We focus here on particular kinds of requests, namely those where a
workflow template is given by the user to provide functional and structural properties of
the answer to be found by the system. Together with a workflow template from the
library, a seed is specified that further constrains data and parameter variables. A given
request may contain several pairs of templates and seeds when the user would like the
system to consider several templates as a starting point to find the solution. By specifying
a template, the user is providing structural properties as indicated by the relative ordering
of the steps in the template. Also through the workflow template, the user can provide
functional properties since the template specifies component types to be used as well as
constraints on data variables.

 27

Formally, given a workflow template library L, a component catalog C, and a data
catalog D, a request WR is defined as a pair of a workflow template and a seed:

 〈 wr, Sr 〉
where wr ∈ L is a workflow template defined by a tuple

 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉
and the seed Sr is defined by a tuple:

〈 DVr, PVr, Mr, DVBr, PVBr 〉
where:

 DVr is a set of data variables for the seed. A subset of these
variables may be specified to be input variables IDVr ⊆ DVr and
another subset may be specified to be output variables ODVr ⊆
DVr.

 PVr is a set of parameter variables for the seed.
 Mr is a (possibly empty) set of DODs using the variables in DVr

and in PVr
 DVBr is a (possibly empty) set of bindings of the workflow data

variables to data object identifiers:
〈 dv, d 〉 ≡ 〈 dv, has-value, d 〉
dv ∈ DVr, d ∈ D

 PVBr is a (possibly empty) set of bindings of the parameter
variables to values:

〈 pv, v 〉 ≡ 〈 pv, has-value, v 〉
pv ∈ PVr, v ∈ V

We use the following definitions:

— Unified request:
A request where the data and parameter variables in the seed correspond to the
data and parameter variables of the workflow template specified in the request.
Formally, DVr ⊆ DVw and PVr ⊆ PVw

— Well-formed request:
A request where any bindings and values in the seed for data and parameter
variables do not overlap with the bindings specified in the workflow template.
Formally:

 DVBr ∩ DVBw = ∅
 PVBr ∩ PVBw = ∅

— Bound request:
A unified well-formed request where the seed and the workflow template provide
bindings for all the input data variables of the workflow template, and the
bindings do not overlap.
Formally:

 28

 DVBr ∩ DVBw = ∅
 ∀ dv ∈ DVw then ∃ <dv, d> ∈ DVBr ∪ DVBw

— Configured request:
A unified well-formed request where the seed and the workflow template provide
values for all the parameter variables of the workflow template specified in the
request, and the value assignments do not overlap.

Table 2: Formal Representation of a Request

<ModelerThenClassifier, {ClassificationDataVariable}, {ClassIndexParameterVar},
 {<ClassificationDataVariable hasDomain weather>
 <ClassificationDataVariable hasType Classification>}, {}
{<ClassIndexParameterVar 5>}>

Formally:
 PVBr ∩ PVBw = ∅
 ∀ pv ∈ PVw then ∃ <pv, v> ∈ PVBr ∪ PVBw

— Seedless request:
A request where the seed is empty.

Table 2 shows an example request specifying the workflow to be used

(ModelerThenClassifier) and providing DODs on a data variable (ClassificationDataVariable) and
a binding for a parameter variable (ClassIndexParameterVar).

We define an additional type of workflow:

— Seeded workflow, or workflow seeded with a request:

A workflow where the DODs for the variables in the request have been combined
with the DODs of the workflow template specified in the request, and the
bindings and parameter values in the request have been combined with those of
the workflow template specified in the request. In order to create a seeded
workflow, the request has to be unified and well-formed.
Formally, a request with the workflow template:

 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉
and the seed:

 〈 DVr, PVr, Mr, DVBr, PVBr 〉
results in the seeded workflow:

 〈Nw, σw, DVw, PVw, Mn, Lw, PLw, DVBn , PVBn 〉
where:

 DVr ⊆ DVw
 DVBr ∩ DVBw = ∅

 29

 PVr ⊆ PVw
 PVBr ∩ PVBw = ∅
 Mn = d:combine-DODs(Mr, Mw)
 DVBn = DVBr ∪ DVBw

 PVBn = PVBr ∪ PVBw
Typically a request will contain a single template and a single seed. We generalize

this by allowing a request to contain several template and seed pairs. By specifying
several templates and seeds, the user would intend to provide the system with a broader
pool of candidate workflows to search through in generating a solution.

If a workflow template were not specified in the request and only the seed was, the
system would have to retrieve relevant templates from the workflow library, which would
often result on several matching templates. Therefore, our algorithm would be preceeded
by a step to retrieve matching templates for the seed. After the templates were retrieved,
we would have a workflow request of the form considered here and our algorithms would
take on the remainder of the process.

The next section describes the algorithms for generating workflows from these
workflow requests.

3.1.3 Algorithm: Automatic Template-Based Workflow Generation

The workflow generation process starts with a request containing several template/seed
pairs. We assume we start with a unified and well-formed request, that is, the variables
that appear in the seed are a subset of the variables in the workflow template and any
bindings specified in the seed do not overlap with the bindings specified in the workflow
template.

Throughout this section, we use the following conventions. The variables of the
algorithm are shown in italics. The functions shown in all capital letters are elaborated in
later subsections. We assume some functions have been defined with the prefixes “get-“
or “set-“ on workflow and request data structures to access their individual constituents.
The function calls in boldface are functions supported by external catalogs, using c: as a
prefix for function calls to external component services, d: for metadata services, and w:
for workflow services.

Since the algorithms perform function calls to external services, it includes provisions
for function calls returning a special error code (the empty set) when there is either some
error in the inputs to the function call or the function is undefined for those inputs. In
such cases, the algorithms reject the workflow being considered as a candidate. These
may be indications that the external catalogs may need to be extended to refine their
models or to include additional components or data objects.

Top-Level Algorithm
Figure 3 shows an overview of the distinct stages during workflow generation. Table 3
describes the top-level algorithm for automatic template-based workflow generation. The
algorithm analyzes workflow candidates at each level on a breadth-first manner, that is,

 30

all candidates are elaborated before proceeding to elaborate workflows at the next level
of detail. A depth-first search version of the algorithm is also a possible alternative. In
either case, the approach we take is to generate all possible candidates, and then rank
them to select the top choices. This is needed because ranking candidates properly
requires that the workflow is specialized and configured.

The algorithm begins by creating a seeded workflow from each of the template/seed
pair in the request. If there were any errors seeding the workflow, due to inconsistencies
in the definition of the seed and the template, the call to SEED-WORKFLOW would
return an empty set and the whole procedure would be terminated.

Next, the algorithm elaborates the workflows and in the process it will find the
requirements on input data. For each candidate workflow, it will start from the output
links and retrieve any additional constraints on the workflow variables that are required
in order to produce the required output. We refer to this process as a backward sweep.
This is done within the algorithm BACKWARD-SWEEP, which we describe in detail
below. When the workflows contain abstract components, the backward sweep algorithm
may find more specific component classes that are appropriate to satisfy the
requirements. When this occurs, several candidate workflows are returned. At the end of
the backward sweep, the original DODs of the workflows have been augmented and can
be used to find datasets that match the request and workflow requirements. We refer to
these as binding-ready workflows.

Now that there are as many constraints on the input data as could be uncovered in the
backward sweep, the algorithm retrieves appropriate input data sources. This is done by
the algorithm SELECT-INPUT-DATA-OBJECTS, which essentially generates bindings
for all the input data variables of the workflow that are not bound in the original request.
Because there may be several alternative datasets that are appropriate, several alternative
bindings may be found and in that case several candidate workflows are returned. For
each workflow candidate, all the properties of the input data sources that may be relevant
to the request are incorporated into the workflow. At the end of this process, the
workflow candidates are all bound.

Next, the algorithm elaborates the workflows by propagating the properties of input
data sources through each step of the workflow. Starting from the input links, it will
retrieve any additional constraints on workflow variables that result from the properties
of input data sources. This process is called a forward sweep. It is done with the
algorithm FORWARD-SWEEP, which is described below. These workflows have
augmented DODs that result from propagating the properties of the input data, and we
refer to them as elaborated workflows. The workflow may still contain abstract
components, and the forward sweep algorithm would specialize them. This results in
several candidate workflows being returned. The forward sweep also assigns values to
all the parameters of the workflow components based on the constraints that are known
for the workflow variables at each step. At the end of this process, the workflow
candidates are all specialized and configured in addition to being elaborated.

Next, all the candidate workflows are ranked based on estimates of their performance.
This ranking function only takes into account a rough estimate of the execution time of a
component based on characteristics of the data. It does not take into account the different
performance across architectures or other characteristics of the execution host such as

 31

memory availability. These estimates also do not take into account how the workflow
performance is affected by data movements, queue wait times, and other execution
delays. Such finer-grained estimates are produced by the workflow mapping and
execution system and are not discussed here. The rough estimates used at this stage are
generated by the algorithm ESTIMATE-PERFORMANCE, described below. The k-best
workflows are returned.

Table 3: Top-Level Algorithm for Automatic Template-Based Workflow Generation

Algorithm: TEMPLATE-BASED-WORKFLOW-GENERATION

Input: request
Output: workflow-instances

 Seed Workflows from Request
1 seeded-workflows ← {}
2 for each template-seed-pair ∈ request do
3 workflows ← SEED-WORKFLOW(template-seed-pair)
4 if (workflows ≠ null) then
5 seeded -workflows ← seeded -workflows ∪ workflows
6 if (seeded -workflows = null) then workflow-instances ← {}; return

 Find Input Data Requirements
7 binding-ready-workflows ← {}
8 for each seeded-workflow ∈ seeded-workflows do
9 workflows ← BACKWARD-SWEEP(seeded-workflow)
10 if (workflows ≠ null) then
11 binding-ready-workflows ← binding-ready-workflows ∪ workflows
12 if (binding-ready-workflows = null) then workflow-instances ← {}; return

 Data Source Selection
13 bound-workflows ← {}
14 for each binding-ready-workflow ∈ binding-ready-workflows do
15 workflows ← SELECT-INPUT-DATA-OBJECTS(binding-ready-workflow)
16 if (workflows ≠ null) then
17 bound-workflows ← bound-workflows ∪ workflows
18 if (bound-workflows = null) then workflow-instances ← {}; return

 Parameter Selection
19 configured-workflows ← {}
20 for each bound-workflow ∈ bound-workflows do
21 workflows ← FORWARD-SWEEP(bound-workflow)
22 if (workflows ≠ null) then
23 configured-workflows ← configured-workflows ∪ workflows
24 if (configured-workflows = null) then workflow-instances ← {}; return

Workflow Ranking
25 ranked-workflows ← {}
26 for each configured-workflow ∈ configured-workflows do
27 workflow ← ESTIMATE-PERFORMANCE(configured-workflow)

 32

28 ranked-workflows ← ranked-workflows ∪ {workflow}
29 ranked-workflows ← select-k-best(ranked-workflows)

Workflow Instatiation and Grounding
30 workflow-instances ← {} ground-workflows ← {}
31 for each ranked-workflow ∈ ranked-workflows do
32 workflow ← INSTANTIATE-WORKFLOW(ranked-workflow)
33 workflow-instances ← workflow-instances ∪ {workflow}
34 ground-workflows ← GROUND-WORKFLOW(workflow)
35 return ground-workflows

Table 4: Algorithm for Seeding a Workflow Template with the Seed Given in the
Request

Algorithm: SEED-WORKFLOW

Input: template-seed-pair
Output: seeded-workflow

1 workflow ← get-template(template-seed-pair)
2 seed ← get-seed(template-seed-pair)
 Combine DODs of the seed with the workflow DODs
3 workflow-DODs ← get-DODs(workflow)
4 seed-DODs ← get-DODs(seed)
5 new-DODs ← d:combine-DODs(workflow-DODs, seed-DODs)
 If the DODs are inconsistent, reject the current workflow
6 if new-DODs = {} then
7 workflow ← {}
8 else
9 set-DODs(workflow, new-DODs)
 Combine the data variable bindings of the seed with the workflow data variable bindings
10 workflow-data-var-bindings ← get-data-var-bindings(workflow)
11 seed-data-var-bindings ← get-data-var-bindings(seed)
12 new-data-var-bindings ← workflow-data-var-bindings ∪ seed- data-var-bindings
13 set-data-var-bindings(workflow, new-data-var-bindings)
 Combine the parameter bindings of the seed with the workflow parameter bindings
14 workflow-par-var-bindings ← get-par-var-bindings(workflow)
15 seed-par-var-bindings ← get-par-var-bindings(seed)
16 new-par-var-bindings ← workflow-par-var-bindings ∪ seed-par-var-bindings
17 set-par-var-bindings(workflow, new-par-var-bindings)
18 return workflow

The algorithm then proceeds to ground the selected workflows by assigning unique
logical identifiers to variables in the workflow that are not input data variables nor
parameter variables. For each intermediate and final link in the workflow, its
corresponding variable will be assigned a unique identifier using the DODs that describe

 33

its properties. During this step the invocation command for each component is also
formulated. This is done by the algorithm INSTANTIATE-WORKFLOW described
below. All workflow candidates will then be ground and ready to be formatted for
submission to the workflow mapping and execution system by extracting from the
workflow instance only the information required for a ground workflow.

Table 5: Algorithm for Backward Sweep Through Workflow

Algorithm: BACKWARD-SWEEP-THROUGH-WORKFLOW

Input: seeded-workflow
Output: binding-ready-workflows

1 workflow ← seeded-workflow
2 new-DODs ← w:find-DODs-given-output-requirements(workflow)
3 when (new-DODs ≠ {})
4 set-DODs(workflow, get-DODs(workflow) ∪ new-DODs)
5 binding-ready-workflows ← {workflow}
6 return binding-ready-workflows

Generating Seeded Workflows
First, the DODs of the seed and the DODs of the workflow template of the request are
combined. If the DODs of the seed and the workflow are inconsistent, the call to the
metadata services to combine these DODs will indicate an error by returning an empty
set. In that case, an empty seeded workflow is returned to the top-level algorithm. Next,
the data variable bindings of the seed and the workflow template are combined. Finally,
the parameter bindings of the seed and the workflow are combined. Since we assume
that the request is unified and well-formed, no errors will occur when merging the
bindings. The result of this stage is a seeded workflow.

Backward Sweep
The backward sweep can obtain the constraints on the input data variables in two
different ways. One way is to use workflow services. These services would propagate
the constraints at the workflow level and would not necessarily reason about constraints
for the intermediate variables in the workflow. Another way is to use component
services. The algorithm would have to walk though the workflow nodes and propagate
constraints component by component by invoking functions implemented by the
component catalog for each of the components.

Table 5 shows the algorithm for the BACKWARD-SWEEP function using the
workflow services. A single function that takes the whole workflow as an argument will
return any additional DODs including DODs on input data variables but may also contain
DODs on intermediate data variables when appropriate.

 34

Table 6: Algorithm for Backward Sweep through Components

Algorithm: BACKWARD-SWEEP-THROUGH-COMPONENTS
Input: seeded-workflow
Output: binding-ready-workflows

1 workflow-queue ← seeded-workflow
2 binding-ready-workflows ← {}
3 while (workflow-queue ≠ {}) do
4 workflow ← dequeue(workflow-queue)
7 link-queue ← get-output-links(workflow)
8 while (link-queue ≠ {} & workflow ≠ {}) do
9 link ← dequeue(link-queue)
10 when (current-link ∉ get-input-links(workflow))
11 node ← get-origin(link)
 Find all links (going sideways) that have the current node as the origin node
12 links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node
13 link-queue ← link-queue \ links-shared-origin
 Find all links (going upstream) that have the current node as the destination node
14 links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node
15 link-queue ← link-queue \ links-shared-dest
 Create a set with all those links that have the current node as origin or destination
16 links-current-node ← links-same-origin ∪ links-dest-is-origin

 Find all the DODs in the workflow that are relevant to the current node
17 vars ← get-data-vars(workflow) ∪ get-param-vars(workflow)
18 vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v
19 node-DODs ← entity-DODs(vars-node, get-DODs(workflow))
20 comp ← get-node-component(node)
 Map DODs on workflow variables to DODs on arguments of the node’s component
21 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)
 If the node’s component is not concrete, get specializations of the component
 and create a new workflow candidate with each of the specializations obtained
22 if (not c:is-concrete(comp)) then
23 concrete-components ← c:specialize(comp,comp-DODs)
 If no specialization of the component can satisfy the requirements, reject the current workflow
24 when (concrete-components ≠ {})
25 for each cc ∈ concrete-components do
26 copy ← copy(workflow)
27 copy ← replace(comp,cc, node,copy)
28 workflow-queue ← workflow-queue ∪ copy
29 else
30 comp-input-DODs ← c:find-DODs-given-output-requirements(comp,comp-DODs)

 If no DODs can satisfy the requirements on the component, reject the current workflow
31 if comp-input-DODs = {}
32 workflow ← {}
33 else
 Map DODs on arguments of the node’s component to DODs on workflow variables
34 var-DODs ← find-variable-DODs(vars,node,comp,comp-input-DODs)
35 set-DODs(current-workflow) ← get-DODs(workflow) ∪ var-DODs
36 end while over link-queue
37 when (workflow ≠ {})
38 binding-ready-workflows ← binding-ready-workflows ∪ workflow
39 end while over workflow-queue
40 return binding-ready-workflows

 35

Table 7: Algorithm for Binding Workflows by Selecting Input Data
__
Algorithm: SELECT-INPUT-DATA-OBJECTS

Input: binding-ready-workflow
Output: bound-workflows

1 bound-workflows ← {}
2 input-links ← get-input-links(specialized-workflow)
3 input-data-variables ← get-variables(input-links)
4 input-DODs ← get-variables(input-data-variables)
5 input-bindings ← d:find-data-objects(input-DODs)
6 for each binding ∈ input-bindings do
7 workflow ← copy(specialized-workflow)
8 set-data-variable-bindings(workflow, get-data-variable-bindings(workflow) ∪ binding)
9 data-objects ← get-data-objects(input-bindings)
10 for each data-object ∈ data-objects do
11 additional-DODs ← d:obtain-DODs(data-object)
12 set-DODs(workflow, get-DODs(workflow) ∪ additional-DODs)
13 bound-workflows ← bound-workflows ∪ {workflow}
14 return bound-workflows

Table 8: Algorithm for Forward Sweep Through Workflow

Algorithm: FORWARD-SWEEP-THROUGH-WORKFLOW

Input: bound-workflow
Output: configured-workflow

1 workflow ← bound-workflow
2 new-DODs ← w:predict-DODs-given-input-requirements(workflow)
3 when (new-DODs ≠ {})
4 set-DODs(workflow, get-DODs(workflow) ∪ new-DODs)
5 if is-configured(workflow)
6 configured-workflow ← workflow
7 else
8 configured-workflow ← null
9 return configured-workflow

Table 6 shows the algorithm for the BACKWARD-SWEEP function using the
component services. For each node in the candidate workflow, it traverses the workflow
from end results to initial inputs. For each of the nodes visited, the algorithm processes
together all the links that have that node either as an origin or as a destination. This is
because some workflow nodes are origin to more than one link. In such cases, we need

 36

to gather all the DODs on workflow variables that constrain the parameters of that node’s
component as we traverse the workflow. If the component is abstract, all the possible
specializations from that abstract component class are obtained. These could be either
more specific component classes or concrete components. When more than one
specialization is returned, more than one specialized workflow will be created for the
initial seeded workflow. All additional DODs that the component places on its arguments
and that are returned by the component catalog are added to the workflow DODs. This
may include parameter values that can be set during this step as constraints on input and
output arguments of the component are introduced by the workflow.
For simplicity, the algorithm in Table 7 assumes that each node in the workflow is origin
to only one link. In cases where there is more than one link with the node as origin, the
algorithm will only proceed to specialize the component in a node when all links relevant
to the outputs of a node have been processed. That is, it ensures that the paths from the
outputs to that node have already been fully processed.

When using the workflow services for the backward sweep, any abstract components
of the workflow will not be specialized. Therefore, when using workflow services for the
backward sweep the workflow template specified in the request must be a concrete
workflow.

The result of the backward sweep is a set of candidate workflows that are all binding-
ready workflows.

Selecting Input Data
This algorithm starts with a binding-ready workflow that includes DODs on all input data
variables. First, it finds available data objects that match those DODs. There can be
several combinations of data object for input data variables, and in that case several sets
of bindings are returned. In that case, a bound workflow will be created for each set of
bindings. If there are no matching data sources then the workflow is rejected and an
empty workflow is returned.

Note that there is a single query to the data catalog for a given workflow, rather than a
query per input data variable. This ensures that any constraints among input data
variables are taken into account by the data catalog during the matching of input data
sources.

Next, the algorithm requests from the metadata services all additional DODs of the
selected input data objects. There may be arbitrarily many possible properties of a data
object and there may be a cost to generating the values of some of the properties. Ideally,
this function would be invoked in a selective and cost-sensitive manner though this is not
addressed in our current work.

Forward Sweep
Like the backward sweep, the forward sweep can be approached in two different ways.
One approach is to use workflow services. These services would propagate the
constraints on input data variables at the workflow level and would not necessarily reason
about constraints for the intermediate variables in the workflow. Another approach is to

 37

use component services. The algorithm would have to walk through the workflow nodes
and propagate constraints component by component by invoking functions implemented
by the component catalog for each of the components.

Table 9: Algorithm for Forward Sweep Through Components

Algorithm: FORWARD-SWEEP-THROUGH-COMPONENTS
Input: bound-workflow
Output: configured-workflows
1 workflow-queue ← bound-workflow
1 configured-workflows ← {}
3 while (workflow-queue ≠ {}) do
4 workflow ← dequeue(workflow-queue)
2 link-queue ← get-input-links(workflow)
8 while (link-queue ≠ {} & workflow ≠ {}) do
9 link ← dequeue(link-queue)
10 when (current-link ∉ get-output-links(workflow))
11 node ← get-dest(link)
 Find all links (going sideways) that have the current node as the origin node
12 links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node
13 link-queue ← link-queue \ links-shared-origin
 Find all links (going upstream) that have the current node as the destination node
14 links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node
15 link-queue ← link-queue \ links-shared-dest
16 links-current-node ← links-same-origin ∪ links-dest-is-origin

 Find all the DODs in the workflow that are relevant to the current node
17 vars ← get-data-vars(workflow) ∪ get-param-vars(workflow)
18 vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v
19 node-DODs ← d:entity-DODs(vars-node, get-DODs(workflow))
20 comp ← get-node-component(node)
 Map DODs on workflow variables to DODs on arguments of the node’s component
21 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)
 If the node’s component is not concrete, create a new workflow candidate with each specialization
22 if (not c:is-concrete(comp)) then
23 concrete-components ← c:specialize-to-concrete(comp,node-DODs)
 If no specialization of the component can satisfy the requirements, reject the current workflow
24 when (concrete-components ≠ {})
25 for each cc ∈ concrete-components do
26 copy ← copy(workflow)
27 copy ← replace(comp,cc, node,copy)
28 workflow-queue ← workflow-queue ∪ copy
29 else
 If the component is not configured, create a new workflow candidate with each configuration obtained
30 if (not c:is-configured(comp, comp-DODs)) then
31 component-configurations ← c:configure(comp,comp-DODs)
 If no configuration of the component can satisfy the requirements, reject the current workflow
 when (component-configurations ≠ {})
32 for each cc ∈ component-configurations do
33 new ← copy(workflow)
34 new ← replace-component(workflow, cc)
35 workflow-queue ← workflow-queue ∪ copy
36 else
37 comp-o-DODs ← c:predict-DODs-given-input-requirements(comp,comp-DODs)
 Map DODs on arguments of the node’s component to DODs on workflow variables
38 var-DODs ← find-variable-DODs(vars,node,comp,comp-o-DODs)
39 set-DODs(current-workflow, get-DODs(workflow) ∪ var-DODs)
40 end while over link-queue
41 when (workflow ≠ {})

 38

42 configured-workflows ← configured-workflows ∪ {workflow}
43 end while over workflow-queue
44 return configured-workflows

Table 10: Algorithm for Estimating Workflow Performance Through the Workflow
__
Algorithm: ESTIMATE-PERFORMANCE-THROUGH-WORKFLOW

Input: ground-workflow
Output: ranked-ground-workflow

1 workflow ← ground-workflow
2 set-performance-estimate(workflow, w: estimate-performance(workflow))
3 return workflow

Table 11: Algorithm for Estimating Workflow Performance Through Components
__

Algorithm: ESTIMATE-PERFORMANCE-THROUGH-COMPONENTS

Input: ground-workflow
Output: ranked-ground-workflow

1 workflow ← ground-workflow
2 link-queue ← get-output-links(workflow)
3 while (link-queue ≠ {} do
4 link ← dequeue(link-queue)
5 when (current-link ∉ get-output-links(workflow))
6 node ← get-dest(link)
 Find all links (going sideways) that have the current node as the origin node
7 links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node
8 link-queue ← link-queue \ links-shared-origin
 Find all links (going upstream) that have the current node as the destination node
9 links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node
10 link-queue ← link-queue \ links-shared-dest

11 links-current-node ← links-same-origin ∪ links-dest-is-origin
 Find all the DODs in the workflow that are relevant to the current node

12 vars ← get-data-vars(workflow) ∪ get-param-vars(workflow)
13 vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v
14 node-DODs ← d:entity-DODs(vars-node, get-DODs(workflow))
15 comp ← get-node-component(node)
 Map DODs on workflow variables to DODs on arguments of the node’s component

16 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)
 Get estimate of the component performance
17 set-predicted-execution-time(node, c:estimate-performance(comp,comp-DODs))
18 end while over link-queue
19 set-performance-estimate(workflow, estimate-aggregate-performance(workflow))
20 return workflow

 39

As was the case with the backward sweep, the algorithm that uses the workflow

services for the backward sweep does not specialize components. Therefore, when using
workflow services for the forward sweep the workflow must be a concrete workflow.

The result of the forward sweep is a set of candidate workflows that are all configured
and specialized workflows.

Table 12: Algorithm for Instantiating Workflows

Algorithm: INSTANTIATE-WORKFLOW

Input: configured-workflow
Output: workflow-instances

1 workflow-queue ← configured-workflow
2 workflow-instances ← {}
3 while (workflow-queue ≠ {}) do
4 workflow ← dequeue(workflow-queue)
5 link-queue ← get-output-links(workflow)
6 while (link-queue ≠ {} & workflow ≠ {}) do
7 link ← dequeue(link-queue)
8 when (current-link ∉ get-input-links(workflow))
9 link-DODs ← d:entity-DODs(get-variable(current-link), get-DODs(workflow))
10 id ← d:assign-identifier(link-DODs)
11 binding ← <get-link-variable(link), id>
12 d:assert-predicted-DODs(id,link-DODs)
13 set-workflow-bindings(workflow, get-workflow-bindings(workflow) ∪ binding)
14 end while over link-queue
14 set-invocation-commands(workflow)
15 workflow-instances ← workflow-instances ∪ {workflow}
16 end while over workflow-queue
17 return workflow-instances

Estimating Workflow Performance
Like the forward and backward sweeps, estimating workflow performance can be done
using workflow services or component services. Because the estimates using component
services would need the DODs for intermediate data products, it is required that the
forward sweep should have been done using component services as well.

The algorithm to estimate performance using component services is shown in Table
11. It walks through the nodes of the workflow, and for each node it gathers the DODs
that are relevant to it. Using those DODs, it invokes the component services to retrieve
the estimates of performance of the workflow. With the individual estimates for each
node, the algorithm then calls a function that aggregates the estimates for the overall
workflow (estimate-aggregate-performance). This function finds the longest path
between the input links and the output links.

 40

Instantiating and Grounding Workflows
The algorithm for instantiating workflows, shown in Table 12, traverses a workflow and
gathers all the DODs on a data variable and requests from the data catalog a unique
identifier for the corresponding execution data product. If the DODs are rich enough, the
data catalog will be able to detect when data products are equal and therefore give them
the same identifier. This enables data reuse with the benefit of saving computation time,
as the workflow execution system can eliminate unnecessary computations that produce
already existing data that was produced by previously executed workflows. When the
DODs are not rich enough, then reuse will not be possible as each new data product will
have its own identifier and there will be no way to detect when data products from
different workflows are the same (unless the workflows are identical). This can happen
in the case where the forward sweep proceeds through workflows rather than through
components.

During grounding of workflows, the invocation command is set for each of the node’s
components. A function is shown in the table that applies to the whole workflow, within
that function there is an invocation of the component catalog for each node’s component
using all the DODs that are relevant to the variables in links adjacent to the node.

The final grounding step essentially extracts a small subset of the information in the
workflow instance to create a ground workflow that can be submitted to the workflow
mapping and execution engine. An example of a workflow instance and its
corresponding ground workflow is shown in the next section.

Summary of Functions for Data and Catalog Services
Table 13 summarizes the functions for data and catalog services invoked by the workflow
generation algorithm. For each function, we indicate the use of that function in the
algorithm.

The next section walks through the main steps of the algorithm with an example of a
workflow request.

3.1.4 A walkthrough Example of Workflow Generation

We now show an example of how workflow candidates are generated from a workflow
request using the algorithm just presented. We present an example that runs end-to-end
in our implemented system, and show through the representation of candidate workflows
at each stage. We use different namespaces to refer to terms that are defined in different
catalogs. Therefore, the workflow catalog, component catalog, and data catalog will have
different namespaces. We use the W3C Ontology Web Language OWL
(www.w3.org/TR/owl-features) to represent workflows and DODs, but will show the
examples using N3 notation.

Table 14 shows the representation of the workflow template for
ModelerThenClassifier shown in Figure 4. The workflow contains two nodes for a
modeler and a classifier. There are six links that represent inputs and outputs of the two
nodes. Note that the workflow in Figure 4 shows the heap size as a parameter of the
classifier, which is not used in this example.

http://www.w3.org/TR/owl-features

 41

Table 15 shows an example of a representation of a workflow request. It specifies
the workflow to use (ModelerThenClassifier) and provides additional DODs on an output
data variable and a parameter variable. In particular, the output of the workflow should
include a classification of a weather data object (i.e. the domain of the
ClassificationDataVariable is Weather) and the value of the ClassIndexParameterVar is 5.
This is the same request shown in Table 2.

Table 13: Summary of functions that need to be supported in the metadata services and the

component services to enable automatic workflow generation

Function in Metadata Services Purpose in Automatic Generation Process
d:combine-DODs Seed workflow templates
d:entity-DODs Filter relevant data properties to be

propagated in the workflow enables workflow
candidate addition and elimination

d:assign-identifier Create unique identifiers and properties for
workflow data products so they can be reused
in future workflows

d:assert-predicted-DODs

d:find-data-objects Selection of input data enables creation of
bound workflows

d:obtain-DODs Propagation of input data properties in
forward sweep enables component
specialization and workflow candidate
elimination

Function in Component Services Purpose in Automatic Generation Process
c:inputs Validate workflow template in request
c:parameters
c:outputs
c:args
c:invocation-command Ground workflows to be submitted for

execution
c:is-concrete Use of abstract components in workflow

templates that can be specialized in backward
and forward sweep

c:specialize
c:specialize-to-concrete
c:is-backward-enabled Generate binding-ready workflows in

backward sweep c:find-DODs-given-output-requirements
c:is-forward-enabled Generate configured workflows in forward

sweep c:predict-DODs-given-input-requirements
c:is-configurable
c:configure
c:is-configured
c:estimate-performance Rank candidate workflows

 42

Given this request, the seeded workflow initially generated by the algorithm is as

the original template shown in Table 13 except that it includes the additional DODs on
ClassificationDataVariable and ClassIndexParameterVar that are introduced by the request.
Table 16 shows a relevant excerpt of the seeded workflow, where the additions to the
original workflow template are highlighted in bold face.

 43

Table 14: A Workflow Example in N3 Notation

ModelerThenClassifier a wflow:WorkflowTemplate ;
 wflow:hasNode classifierNode , modelerNode ;
 wflow:hasLink modelerTrainingDataInputLink, modelerJavaMaxHeapInputLink,
 classifierOutputLink , modelerOutputClassifierInputInOutLink,
 modelerClassIndexInputLink , classifierDataInputLink .

modelerNode a wflow:Node ; wflow:hasComponent ac:Modeler.
classifierNode a wflow:Node ; wflow:hasComponent ac:Classifier .

modelerTrainingDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TrainingDataVariable .

TrainingDataVariable a dcdm:Instance , wflow:DataVariable .

maxJavaHeapSizeModelerParameterVar a wflow:ParameterVariable .

modelerJavaMaxHeapInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:j ;
 wflow:hasVariable maxJavaHeapSizeModelerParameterVar .

ClassIndexParameterVar a wflow:ParameterVariable .

modelerClassIndexInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:i ;

ModelDataVariable a dcdm:Model , wflow:DataVariable .

modelerOutputClassifierInputInOutLink a wflow:InOutLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:m ;
 wflow:hasOriginNode modelerNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ModelDataVariable .

classifierDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TestDataVariable .

TestDataVariable a dcdm:Instance , wflow:DataVariable ;

 dcdm:notSameObject TrainingDataVariable;
 wflow:hasVariable modelerClassIndex .

classifierOutputLink a wflow:OutputLink ;
 wflow:hasOriginNode classifierNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ClassificationtDataVariable .

ClassificationDataVariable a wflow:DataVariable , dcdm:Classification .

 44

Table 15: Example of Workflow Requests in N3 Notation

owl:imports ModelerThenClassifier.owl // use ModelerThenClassifier workflow

ClassificationDataVariable a dcdm:Classification ;
 dcdm:hasDomain dcdm:weather.

ClassIndexParameterVar wflow:hasParameterValue 5.

Table 16: Relevant Excerpts of a Seeded Workflow

…
ClassIndexParameterVar a wflow:ParameterVariable ;
 wflow:hasParameterValue 5. // from the request
…
ClassificationDataVariable a wflow:DataVariable , dcdm:Classification;
 dcdm:hasDomain dcdm:weather. // from the request
…

Table 17 shows an example of a binding-ready workflow generated as a candidate

after the backward sweep. The original Modeler abstract component has been specialized
into LmtModeler and the Classifier into J48Classifier. This specialization introduces some new
DODs of the data objects used or created by the components, such as dcdm:hasModelType.
The DODs in the original request are propagated by the backward sweep and result in
additional DODs on some of the workflow data variables. For example,
TrainingDataVariable, ModelDataVariable, and TestDataVariable have a new DOD with a
requirement in their domain property that it be weather.

Decision Tree classifiers can use Decision Tree models only and Bayes classifiers
can only use Bayes models. Assuming a component catalog that includes three Decision
Tree modelers (J48Modeler, LmtModeler, ID3Modeler), three Decision Tree
classifiers(J48Classifier, LmtClassifier, ID3Classifier), three Bayes modelers(BayeNetModeler,
NaiveBayesModeler, HBNModeler) and three Bayes classifiers (BayeNetClassifier,
NaiveBayesClassifier, HBNClassifier and six classifiers), 18 total seeded specialized workflows
would be generated as candidates.

The next step of the algorithm finds available data objects for the input data
variables. With the workflow in Table 17, the following query for selecting input data
objects for two input data variables is generated:

 45

Table 17: An Example Binding-Ready Workflow After the Backward Sweep

TrainingDataVariable a dcdm: Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather.

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:notSameObject TrainingDataVariable;
 dcdm:hasDomain dcdm:weather.

LmtModelerThenJ48Classifier a wflow:WorkflowTemplate ;
 wflow:hasNode classifierNode , modelerNode ;
 wflow:hasLink modelerTrainingDataInputLink , modelerJavaMaxHeapInputLink , classifierOutputLink ,
 modelerOutputClassifierInputInOutLink , modelerClassIndexInputLink , classifierDataInputLink.

modelerNode a wflow:Node ; wflow:hasComponent ac:LmtModeler.
classifierNode a wflow:Node ; wflow:hasComponent ac:J48Classifier.

modelerTrainingDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TrainingDataVariable ;

TrainingDataVariable
 a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather.

maxJavaHeapSizeModelerParameterVar a wflow:ParameterVariable .

modelerJavaMaxHeapInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:j ;
 wflow:hasVariable j maxJavaHeapSizeModelerParameterVar .

ClassIndexParameterVar a wflow:ParameterVariable .
 wflow:hasParameterValue 5. // from the request

modelerClassIndexInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:i ;
 wflow:hasVariable ClassIndexParameterVar .

modelerOutputClassifierInputInOutLink a wflow:InOutLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:m ;
 wflow:hasOriginNode modelerNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ModelDataVariable ;

ModelDataVariable
 a dcdm:LmtModel , wflow:DataVariable ;
 dcdm:hasDomain dcdm:weather ;
 dcdm:hasModelType DecisionTree.

classifierDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:i ;
 wflow:hasVariable TestDataVariable .

 46

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:notSameObject TrainingDataVariable;

 dcdm:hasDomain dcdm:weather.

classifierOutputLink a wflow:OutputLink ;
 wflow:hasOriginNode classifierNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ClassificationDataVariable .

ClassificationDataVariable a wflow:DataVariable , dcdm:DtmClassification ;
dcdm:hasDomain dcdm:weather; // from the request

Table 18: Relevant Excerpts of an Example Bound Specialized Workflow

…
TrainingDataVariable
 a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 wflow:hasDataBinding dcdm: weather-2007-31-101501.

TestDataVariable
 a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 wflow:hasDataBinding dcdm:weather-2007-31-155754.

Other seeded specialized workflow candidates may generate different queries for
finding data objects. For example, workflow candidates with BayesModeler or BayesClassifier
will need DiscreteInstance as an input. A workflow with a NaiveBayesModeler and a
J48Classifier will result in a query with the following data object descriptions:

TrainingDataVariable a dcdm:DiscreteInstance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather.

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:notSameObject TrainingDataVariable;
 dcdm:hasDomain dcdm:weather.

With a data catalog with four weather domain datasets (weather-2007-31-101501,

weather-2007-31-101503, weather-2007-31-101656, and weather-2007-31-155754) that
are all ContinuousInstances, the system will not find matching datasets for the workflows
that need DiscreteInstances. In our running example, only 4 of the 18 candidate workflows
with Lmt and J48 combinations (LmtModelerThenJ48Classifier, LmtModelerThenLmtClassifer,
J48ModelerThen LmtClassifier, J48ModelerThen J48Classifier) will get results from the query to
find matching data objects. For each candidate binding-ready workflow, the system
produces twelve bindings since TrainingDataVariable and TestDataVariable should be
bound to different weather datasets. That is a total of 48 candidate bound workflows
generated in our running example. Table 18 shows an example of a bound workflow for
LmtModelerThenJ48Classifier. For brevity, only the bindings and the DODs of the input data
variables are shown.

 47

The forward sweep sets all the parameter values of components and includes
DODs for workflow data products. After that, the grounding step introduces data object
identifiers for intermediate and final workflow data variables. Table 19 shows an
example of a resulting workflow instance. The value of
maxJavaHeapSizeModelerParameterVar is set in proportion to the size of the data sets
that are bound to Training DataVariable (dcdm:weather-2007-31-101501). In particular, if the
size of the data set is greater than 10,000 the parameter value is set to 1024M and if the
size is less than 1,000 the value is set to 256M; otherwise it will be set to 512M.

Table 19: A Workflow Instance After Workflow Instantiation

LmtModelerThenJ48Classifier a wflow:WorkflowTemplate ;
 wflow:hasLink modelerTrainingDataInputLink , modelerJavaMaxHeapInputLink , classifierOutputLink ,
modelerOutputClassifierInputInOutLink , modelerClassIndexInputLink , classifierDataInputLink ;
 wflow:hasNode classifierNode , modelerNode .

modelerNode a wflow:Node ; wflow:hasComponent ac:LmtModeler.
classifierNode a wflow:Node ; wflow:hasComponent ac:J48Classifier.

modelerTrainingDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TrainingDataVariable.

TrainingDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 wflow:hasDataBinding dcdm:weather-2007-31-101501.

maxJavaHeapSizeModelerParameterVar a wflow:ParameterVariable ;
 wflow:hasParameterValue “512M”;

modelerJavaMaxHeapInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:j ;
 wflow:hasVariable maxJavaHeapSizeModelerParameterVar .

modelerClassIndex a wflow:ParameterVariable .
 wflow:hasParameterValue 5; // from the request

modelerClassIndexInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:i ;

modelerOutputClassifierInputInOutLink a wflow:InOutLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:m ;
 wflow:hasOriginNode modelerNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ModelDataVariable .

ModelDataVariable a dcdm:BayesModel , wflow:DataVariable ;
 dcdm:hasModelType DecisionTree ;
 dcdm:hasDomain dcdm:weather ;
 wflow:hasDataBinding modelerOutputModelDataVariable_1191372118140.

classifierDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TestDataVariable .

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 workflow:hasDataBinding dcdm:weather-2007-31-155754.

 48

classifierOutputLink a wflow:OutputLink ;
 wflow:hasOriginNode classifierNode ;
 wflow:hasOriginArgument ac:o;
 wflow:hasVariable ClassificationDataVariable .

ClassificationDataVariable a wflow:DataVariable , dcdm:DtmClassification ;
 dcdm:hasDomain dcdm:weather; // from the request
 wflow:hasDataBinding ClassificationDataVariable_1191372118140.

Table 20: Example Ground Workflow Generated from a Workflow Instance

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: Tue Oct 02 17:42:29 PDT 2007 by Wings -->
<adag xsi:schemaLocation="http://www.griphyn.org/chimera/DAX http://www.griphyn.org/chimera/dax-
1.10.xsd"
xmlns="http://www.griphyn.org/chimera/DAX"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="1.10" count="1" index="0" name="ModelerThenClassifier-dax198d8-b4d199239c5e7f99">

<!-- part 2: definition of all jobs -->
 <job id="Job1-04bd4f3cbfd2" namespace="http://www.isi.edu/ac/dm/library.owl" name="J48Classifier"
version="">
 <argument>-T <filename file="weather-2007-31-155754"/>
 -l <filename file="modelerOutputModelDataVariable_1191372118140"/>
 -O <filename file="ClassificationDataVariable_1191372118140"/> </argument>
 <uses file="modelerOutputModelDataVariable_1191372118140" link="input"/>
 <uses file="weather-2007-31-155754" link="input"/>
 <uses file="ClassificationDataVariable_1191372118140" link="output"/>
 </job>
 <job id="Job0-18917e3ec858" namespace="http://www.isi.edu/ac/dm/library.owl" name="LmtModeler"
version="">
 <argument>-Xmx 512M -t <filename file="weather-2007-31-101501"/>
 -d <filename file="modelerOutputModelDataVariable_1191372120250"/> -c 5 </argument>
 <uses file="weather-2007-07-31-101501" link="input"/>
 <uses file="modelerOutputModelDataVariable_1191372120250" link="output"/>
 </job>

<!-- part 3: list of control-flow dependencies (empty for single jobs) -->
 <child ref="Job1- 04bd4f3cbfd2">
 <parent ref="Job0-18917e3ec858"/>
 </child>
</adag>

The next step is ranking the 48 candidate workflows based on estimates of

performance. For this, the predicted DODs for intermediate data sets are useful. For
example, the size of intermediate data products is useful to obtain estimates on
performance time for the different algorithms of the workflow components.

In the final step, each workflow instance is turned into a bound workflow that can
be submitted to the workflow mapping and execution system. Table 20 shows the ground
workflow extracted for the workflow instance in Table 18. It shows the format used by
the Pegasus workflow mapping and execution engine [Deelman et al 05].

http://www.griphyn.org/chimera/DAX
http://www.griphyn.org/chimera/dax-1.10.xsd
http://www.griphyn.org/chimera/dax-1.10.xsd
http://www.griphyn.org/chimera/DAX
http://www.w3.org/2001/XMLSchema-instance
http://www.isi.edu/ac/dm/library.owl
http://www.isi.edu/ac/dm/library.owl

 49

3.2 Workflow Ranking and Selection

For implementing the ranking module, System Research ported the HEFT [Topcuoglu
99] multiprocessor scheduling algorithm for scheduling on the Grid. The ranking for each
workflow happens as follows:

1) For each job in the workflow, the weighted execution times are computed.
2) The downward ranks are computed then for each job. Downward rank of a job is

defined as the longest distance from the root of the workflow to the job, excluding
the computation of the job.

3) The jobs are then sorted in ascending order of their downward ranks.
4) Each of the above jobs in the sorted list, are then scheduled to a grid site. The grid

site that is finally selected is the one that minimizes the finish time for the job.
5) The makespan of the workflow is determined as the maximum of the actual finish

times of the leaf jobs of the scheduled workflow.
6) The higher the makespan of a workflow, the longer it will take to run. Thus, the

workflow with the least makespan is the one with the highest rank, where higher
the rank means better.

For the above algorithm, the SR relies on the Process Catalog for the following
information:

• The sites where a particular job can be executed.
• The predicted performance of a code on a particular site, when run with the

arguments specified in the DAX.

3.3 Managing Creation and Execution of Multiple Workflows

The Ensemble Manager (EM) component of the SR system is responsible for supporting
the creation and the execution of multiple workflows at the same time.

Current workflow systems allow only sequential or uncoordinated creation and
execution of a single workflow. The Ensemble Manager that we have developed
coordinates and efficiently handles generation, ranking, planning and executing of 100’s
of workflows simultaneously on the TanGrid.

The EM takes a set of Tangram requests or Seeds. Each seed is specified with a
configuration file that configures various aspects of how the request will be ranked,
planned, executed etc.

 50

The Ensemble Manager uses Condor and DagMan to manage the creation and
execution of workflows. Instead of creating our own queuing mechanism, we built on the
existing condor scheduler. By generating appropriate condor jobs to do the creation and
execution steps and adding the dependencies in a dag, the Ensemble Manager can
efficiently execute 100’s of workflows simultaneously in an efficient manner. EM
extends and uses several Condor features like job priority, job start time, etc. to provide
various features like start time for each workflow in an Ensemble, different priorities
across each workflow, wall time by which the workflow needs to be finished etc. EM
uses the postscript feature of Condor that allows it to run a script when a job finishes, no
matter if the parent job failed or succeeded, to monitor the successful completion of
different creation, planning and execution jobs.

Figure 6: Structure of the DAG constructed by the Ensemble manager

 51

Ensemble Manager Features:

• Allows submission of a set of seeds (a portfolio)
• Each seed is specified with its own seed configuration file
• Each seed can have a different priority

o The priority is applied to all stages of the workflow generation and
execution

• Each seed can have a different start time
• Each seed can have a different wall-time or end time. If the workflow is still

executing when the wall-time finishes the workflow is killed
• Continuously monitors the progress of the portfolio and seeds and updates the

status of the seeds in a database.

The Ensemble Manager takes in an input file called portfolio containing Seeds and
seed configurations. From these seed configurations the ensemble manager generates
several configuration files for workflow generation, ranking and planning. After
generating these configuration files, the EM creates the main ensemble dag and submits
files required to generate, rank, plan and execute the given seeds in the portfolio.

Figure 6 shows the structure of the DAG constructed by the Ensemble manager for a
single portfolio (EM Request) with 2 Requests or Seeds (Workflows).

For each seed the EM creates the following jobs:
1. Workflow Generation Job: This job takes in the Seed identifier and generates the

appropriate Abstract Workflows (DAX)
2. Workflow Ranking Job: This job takes in the DAX generated by the earlier

Ranking Job and ranks the generated DAX’s and produces a ranked DAX file.
3. Planner DAG Generator Job: The third job added parses the generated ranked file

and generates a planner DAG to plan the ranked workflows and execute them
4. Planner DAG: The planner dag consists of

a. Pegasus Plan Job: This job ranks one of the ranked DAX’s in the
workflow and produces an executable workflow to execute on the
TanGrid

b. The Executable Workflow DAG and submit files: This Workflow has the
jobs which create the Knowledge Base in the Allegro Graph, the transfer
job that copies the data from the Evidence Data Base to the Knowledge
Base, jobs that run the wrapped executables etc.

4. SUPPORT FOR PROGRAM INTEGRATION

This section describes SR’s effort on developing workflow generation API and
supporting program integration. The API describes all the queries to be issued by SR's
automated workflow generation and execution capability to other architectural
components, notably AC and DC.

 52

4.1. SR-12 Workflow Generation API

The workflow generation API defines the invocation of DC and PC functions during the
major steps in workflow generation and execution.

Step 0: Initiating the Workflow Generation Process

The workflow request may just be to run a workflow template for some purpose or run a
variant of an existing template.

 SEA->SR: solveWorkflowRequest(WTi, DODr)
 SR->SEA: { {dataSetIDi} }

WTi ==> workflow template id
DODr ==> data object descriptions from the request given in the teo/data/metics/dataAccess
namespaces on some data variables

Step 1: Find Candidate Analyses

This step was not needed for SR-12, since the initial request will specify a template and
associated constraints.

Step 2: Find Data Object Descriptions and Argument Mappings

[Q2.1]

 SR->AC: findInputDataRequirements(Ci, {DODi AMi})
 AC->SR: {Cj {DODk AMk}}

 Ci ==> an abstract or concrete component description from the adl namespace from a workflow
template

{DODi , AMi}==> data object descriptions in the teo, data, and metrics namespace for the output
of Ci and component-argument-to-template-dataVariable mappings for Ci - dataVariables will be
in the sr namespace and the component arguments will be in the adl namespace. Arguments refer
to the data object inputs and outputs of the component. Note that the DOD's contain information
about patterns and parameters.

Cj ==> a component description from the adl namespace for concrete component

{DODk , AMk} ==> data object descriptions in the teo, data, and metrics namespace for the inputs
& outputs and component-argument-to-template-dataVariable mappings for Cj - dataVariables
will be in the sr namespace and the component argument will be in the adl namespace. Note that
the DOD's contain information about patterns and parameters.

Step 3: Data Source Selection

[Q3.1]

 SR->DC: FindDataSources({DODi})
 DC->SR: {DVj DSj}

 53

{DODi} ==> data object descriptions from the teo/data/metrics/dataAccess namespace mapped to
data variables (in the sr namespace) from a workflow template. These descriptions explain
constraints on and between the data variables in a particular workflow template

{DVj DSj} ==> data variables (in the sr namespace) mapped to data source ids (in the dc
namespace).

Step 4: Workflow Instance Generation

[Q4.1]

SR->DC: FindDataMetricsForDatasource(DSi &opt {dc metric or
characteristic})
DC->SR: DODi

DSi ==> A data source id

{dc metric or characteristic} ==> specific data metric or data characteristic - if not provided the
full set of metrics and characteristics are returned.

DODi ==> Data object descriptions in the teo, data, and metrics namespace for the DSi data
source

[Q4.2]

SR->AC: FindOutputDataPredictedDescriptions(Ci, {DODi AMi})
AC->SR: {DODk AMk }

Ci ==> a component description in the adl namespace for a concrete component

{DODi , AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input
and output of Ci and component-argument-to-template-dataVariable mappings for Ci -
dataVariables will be in the sr namespace and the component arguments will be in the adl
namespace. Arguments refer to the data object inputs and outputs of the component. Note that the
DOD's may contain information about patterns and parameters.

{DODk AMk} ==> data object descriptions in the teo, data, and metrics namespace for the input
and output of Ci given {DODi AMi}

[Q4.5]

 SR->AC GetInvocationCommand(Ci, {DODi AMi})
 AC->SR {Aj}

Ci==> a component description in the adl namespace for a concrete component

{DODi AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input
and output of Ci and component-argument-to-template-dataVariable mappings for Ci -
dataVariables will be in the sr namespace and the component arguments will be in the adl
namespace for input and output data objects. Arguments refer to the data object inputs and
outputs of the component.

Aj == > an argument list as specified in the argument section of the Basic Component
Encapsulation page. All parameter arguments must be returned with actual values.

 54

Step 5: Data Query and Workflow Reduction

Query 5.1a is made to the DC to get the locations of datasets and any attributes associated
with it.

Query 5.2b is made to the Pattern Catalog to get the locations of patterns and attributes.
The query and results look similar for both queries.

[Q5.1a]

 SR->DC: FindDataSetLocationAndAttribs(DSi)
 DC->SR: {DSLA | NULL}

DSi ==> a data source id

{DSLA} ==> data source locations and access protocols for DSi

{NULL} ==> If NULL then the datasetid does not exist

[Q5.1b]

 SR->AC: FindPatternLocationsAndAttribs(PSi)
 AC->SR: {PSLA | NULL}

PSi ==> a pattern source id

{PSLA} ==> pattern source locations and access protocols for PSi {NULL} ==> pattern source
locations for pattern id does not exist

[Q5.2a]

 SR->AC: GetPredictedPerformance(Ci, {DODi AMi}, &opt architecture)
 AC->SR: {architecture PP }

Ci ==> a component description in the adl namespace for a concrete component

{DODi AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input of
Ci and component-argument-to-template-dataVariable mappings for Ci - dataVariables will be in
the sr namespace and the component arguments will be in the adl namespace. Arguments refer to
the data object inputs and outputs of the component.

architecture ==> a specific hardware architecture

{architecture PP } ==> architecture and predicted performance for Ci given {DODi AMi}

[Q5.2b]

 SR->AC: GetPredictedPerformance(Ci, {DODi AMi}, &opt site)
 AC->SR: {site PP}

Ci ==> a component description in the adl namespace for a concrete component

 55

{DODi AMi} ==> data object descriptions in the teo, data, and metrics namespace for the input of
Ci and component-argument-to-template-dataVariable mappings for Ci - dataVariables will be in
the sr namespace and the component arguments will be in the adl namespace. Arguments refer to
the data object inputs and outputs of the component.

site ==> a cluster or part of a cluster with homogenous arch/os/glibc (speed and memory may/can
be different)

{site PP} ==> site and predicted performance for Ci given {DODi AMi}

Step 6: Workflow Ranking

Not used in SR-12.

Step 7: Workflow Mapping

[Q7.1]

 SR->AC: FindCodeLocations (Ci)
 AC->SR: {Li}

Ci ==> a component description using the adl namespace

Li ==> sites where Ci is located , type of component, and system information (arch,os,os version,
glibc)

[Q7.2]

SR->AC: GetDeploymentRequirements(Ci, site)
AC->SR: {R}

Ci ==> a component description in the adl namespace for a concrete component

site ==> a cluster or part of a cluster with homogenous arch/os/glibc (speed and memory may/can
be different)

{R} ==> requirements for running Ci on site

Step 8: Workflow Execution

[Q8.1]

 SR->DC: AddDataSetIDs(DSi,DSLAi)
 DC->SR: {t | nil}

DSi ==> a data source id

DSLAi ==> data source locations,access protocols and attribs for DSi

This is related to the 5.1 query above. The information registered in 8.1 is available for
queries during the generation of other workflows during step 5 using 5.1

 56

[Q8.2]

SR->DC: FindActualDataSetCharacteristics(DSi &opt {dc metric or
 characteristic})

 DC->SR: DMC

DSi ==> A data source id

{dc metric or characteristic} ==> specific data metric or data characteristic - if not provided the
full set of metrics and characteristics are returned.

DMC ==> data metrics and/or characteristics for the data source indicated by DSi

5. MAJOR MILESTONES: DEMONSTRATIONS AND
EVALUATIONS

This section describes SR’s major milestones throughout the program.

5.1 SR-6 Demonstration

The objectives of SR-6 demonstration were:
1) Demonstrate that SR can create and execute program-relevant workflows drawing

from pre-existing SR technologies in a few months time. This serves as a proof of
concept that:
• A Tangram system will result in significant time savings over manually

constructed workflows
• A Tangram system will enable workflows that are much more complex than

the at-most 3 steps/algorithms workflows that analysts develop today.
2) Demonstrate that an efficient inter-algorithm data exchange mechanism can be

implemented and integrated with the SR workflow system. The algorithm
interface will be implemented by GU through the first instantiation of GU's
Gather subsystem.

The first objective was accomplished by the SR team on December 14, 2006. The

workflows for this demonstration were constructed by hand from five algorithms and two
synthetic data sources. The second objective was accomplished on February 26, 2007.
GU provided workflow components for translating data in and out of algorithms, the data
and algorithms were provided by SR from the December 2006 workflows.

 57

Figure 7 shows the workflows used in December 2006. The 2007 workflows are
isomorphic to Workflow 2 (W2) but they used the Gather translators.

The workflows designed for SR-6 were designed to be appropriate for a data-to-
warning system, as envisioned by Tangram. The SR-6 workflows were designed with no
guarantees as to the quality or accuracy of the results.

The SR-6 demonstration used the Hats simulator to produce synthetic data sources to
demonstrate a data to hypothesis to warnings system. The Hats simulator produces a
variety of data grouped into 22 files (See “Hats Simulator Batch Data Sets”, J. Moody,
Nov 2, 2006). The workflow uses only five of these possible data sources:

• meetings: meetings between individual hats that occurred during the simulation.
• watch list: a list of hats that are known to be malicious.
• capabilities: a set of capabilities that exist in the simulation, either because they

are required to attack some beacon or because some hat has them.
• trades: exchanges of capabilities between two hats that occurred in the simulation.
• beacon vulnerabilities: for each beacon it specifies the capabilities required to

attack it (reflecting the vulnerabilities of that beacon).

The workflows include Eagle algorithms, and to use them we had to turn legacy code

into workflow components. The components used include
• GDA: group finder (CMU, Kubica)
• BC: group finder (Newman, ISI implementation: Moody)
• KOJAK: group finder (ISI, Adibi, Chalupsky)
• RLP: suspicion scorer (ISI, Galstyan)
• NetKit: suspicion scorer (NYU, Macskassy)
• CapTracker: non-linear tracking (ISI, Mitra, Galstyan)

Several additional components were developed by SR.
• merge: merging the results of n components
• filter: selecting data views, heuristic selection of content
• translate: selecting data views, format conversion

 58

W1: Search for group seed members then run two group finding algorithms then merge results

(a) Original workflow

 59

W2: W1 with group seed members coming from primary sources

(b) ManualSeed: Seed groups are provided

 60

W3: W1 with efficient execution by parallel search for group seed members

(c) ParallelSeed: Seed groups are found through parallel computation

Figure 7: Workflows Demonstrated in December 2006

 61

Figure 8 shows an example template, workflow instance and executable workflow from
SR-6. We executed the first Tangram-relevant workflow using the workflow system and
the program testbed. It is a portion of the planned SR-6 workflow focused on group
detection. It used a small data set from Hats (about 500 hats), and was run on the ISI
Skynet cluster that was part of the program testbed at that time. It contains 16 executable
components. After a few weeks of design, code development, and code characterization,
it took a few hours to create the workflow template with the Wings editor, and a few
hours to generate the executable workflow. Note that the structure of the above workflow
is very simple (by design), so the nodes and files in the template and the instance mirror
one another. Figure 9 shows a workflow with parallelized seed member formation where
this is not the case.

Template:
Generic Recipe

Instance:
Specifies data sources

for a template

Executable:
Specifies physical locations
+ data replicas for instance

computation

data

Figure 8: Workflow Creation in SR-6 from Template to Instance to Execution

 62

 (a) Parallel Seed: Workflow Instance Creation

(b) Parallel Seed: Workflow Execution

Workflow Template
(Edited in Wings)

Workflow Instance
(Automatically

generated by Wings)

2006−12−12 15:17−0800 by gmehta [GroupFindingTemplate_10_Pll/run0001]

Jobs over Time
0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

0

20

40

60

80

100

120

140

160

180
Worker job

Stage−in job

Stage−out job

Replica job

Interpool Xfer

Unknown job

GridStart info

runtime

W
orkflow

 tasks

Execution of
10 parallel seed
generation jobs

Executable Workflow
(Automatically

generated by Pegasus)

Figure 9: Example Workflow with Parallel Seed Creation

 63

The Pegasus Workflow Planner reuses existing data products on the grid to refine and

reduce the workflow so that only those computations required are run. The existing data
products are transferred from the remote sites to the execution locations. Figure 10 shows
how data reuse makes computation more efficient. The workflow on the right (b) has
some of the same computation as the workflow on the left (a). When workflow (a) is run
first, with reuse, the system can save the computations needed for the same portion.

 In summary, the SR-6 demonstration provided a proof of concept of the Tangram
system and a set of workflows to guide SR-12 and SR-18 integration discussions.

5.2 SR-12 Demonstration

The SR-12 demonstration was designed by the SEA evaluation team.

The SR team contributed:

(b) ManualSeed:
with Kojak +

GDA + merge step

(a) ManualSeed
With GDA only

Computations
removed
by Pegasus

Intermediate
data product
already exists
and can be reused

30 mins,
20 tasks

3hrs 47 mins,
41 tasks

3hrs 44 mins,
25 tasks

10K
entities

18 mins,
20 tasks

21 mins,
41 tasks

17 min,
25 tasks

1K
entities

NO REUSE WITH REUSE

Figure 10 : Supporting Data Reuse Across Workflows

 64

• A workflow reasoning system that can query the Data Characterization and
Process Characterization services to properly select the data sources and
workflow components for a given workflow request to generate workflow
instances. To this end, the SR team:

1. designed a workflow generation algorithm to automatically create
executable workflows from high-level workflow requests

2. defined APIs for DC and PC services to be invoked during that process

3. implemented a workflow system that had these capabilities

• A workflow execution system that can execute the workflow instances that enable
workflow components to interact with source evidence and produce hypotheses
that will be used by downstream workflow components using a unified
representation provided by Graph Unification. To this end, the SR team:

o designed a specification to convert executable codes into proper workflow
components using a Basic Component Encapsulation schema and
methodology

SR-12 demonstrated automated workflow generation using externally provided data
and component catalogs on Tangram-relevant workflows. The SR team developed a
Workflow Generation API that specifies how the workflow generation system interacts
with the systems being developed by other program participants.

SR’s workflow reasoning system queries the Data Characterization and Process
Characterization services to properly select the data sources and workflow components
for a given workflow request to generate workflow instances. SR’s workflow execution
system executed the workflow instances that enable workflow components to interact
with source evidence and produce hypotheses, which were used by downstream
workflow components using a unified representation provided by Graph Unification.

The following subsections describe SR-12 functional and technical requirements
defined by the SEA evaluation team that are relevant to SR.

5.2.1 SR-12 Functional Requirement Relevant to SR

This section summarizes SR-12 functional requirements (FR) defined by the SEA
evaluation team that are relevant to SR.

Functional Requirement 2 (FR-2)

 FR-2: The SR-12 System shall demonstrate the use of more than 2
workflow components in the workflow (Evaluate the GU inter-component
data exchange process)
 SEA/SR Claim: Workflow templates contain 3 classes of Workflow
Component: Group Detection Process, Pattern Matching Process, Data
Union Process

 65

The workflow template used in the SR-12 workflow requests uses 3 types of workflow
components: GroupDetection, DataUnion, and PatternMatching.

FR-3

 FR-3: The SR-12 System shall demonstrate the ability to orchestrate
workflow components of more than one process type (Evaluate GU ability
to exchange data)
 SEA/SR Claim: Workflow templates contain 3 classes of Workflow
Component: Group Detection Process, Pattern Matching Process, Data
Union Process

The workflow template used in the SR-12 workflow requests uses 3 types of workflow
components: GroupDetection, DataUnion, and PatternMatching.

FR-4

 FR-4: The SR-12 System shall demonstrate the ability to instantiate
a given workflow template in multiple ways, depending on the
characteristics of the available dataset(s), the availability of
suitable patterns, and/or other conditions (Evaluate the work flow
composition process based on variances in data, search patterns or
other work flow pre-conditions)
 SR Claim: The workflow system invokes PC and DC services with
constraints imposed by the workflow template and the workflow request

SR invoked PC and DC through the following API queries:

• Q2.1 was invoked to specialize components in the workflow template. For the
workflow request shown above, this query was invoked 3 times and 5 components
were returned, resulting in the generation of 4 workflow candidates from the
original workflow.

• Q3.1 was invoked to find valid data sources for the request. For the workflow
request shown above, this query was invoked 4 times, each call returning 3
bindings for the workflow, resulting in the generation of 12 workflow candidates.

FR-5

 FR-5: The SR-12 System shall demonstrate handling of multiple
workflow requests concurrently
 (Evaluate the workflow manager's ability to accept multiple
concurrent work flow requests from TEE)
 SR Claim: The workflow system can manage the workflow generation
process for several requests submitted.

Several alternative workflow requests were created and submitted concurrently to the
workflow system.

 66

FR-6

 FR-6: The SR-12 System shall demonstrate the ability to track
lineage, pedigree, and provenance of assertions and hypotheses during
workflow processing (Evaluate the Tangram system's ability to acquire
and store information about each workflow instance)
 SR Claim: The workflow system records extensive traces of the
workflow generation process (including queries issued and responses
obtained, workflow candidates generated or eliminated) and of the
workflow execution process. Log4J is used for the workflow generation
phases.

A detailed trace of the generation of executable workflows for one of the requests is
uploaded in the code repository.

5.2.2 SR-12 Technical Requirements Relevant to SR

This section summarizes SR-12 technical requirements (TR) defined by the SEA
evaluation team that are relevant to SR.

Technical Requirement-2 (TR-2)

 TR-2: The SR-12 System shall demonstrate the ability to execute
multiple workflow instances concurrently (Evaluate the ability to plan
and deploy multiple concurrent workflow instances)
 SR Claim: SR system (via Ensemble Manager and Pegasus?) will be
capable of scheduling and initiating concurrent executions of workflow
instances on TanGrid.
 SR Claim: SR system (via Ensemble Manager and Pegasus?) will ensure
no node is used for more than one Workflow Component execution at a
time (due to GATHER implementation limitation)

TR-3

 TR-3: The SR-12 System shall demonstrate the ability to tailor/scope
workflow instances on the basis of characteristics of available
resources (Evaluate SR (Pegasus) mapping of workflow processes to
hardware resources based on PC process installation information)
 SR Claim: Pegasus will select available nodes on the basis of
hardware requirements provided by PCat for each Workflow Component

TR-4

 TR-4: The SR-12 System shall encode and interpret workflow templates
referencing process types available via the Process Catalog ontologies
(e.g. Capability Layer of ADL) (Evaluate SR's ability to construct
workflows consistent with the PC definition of process types)
 SR Claim: Workflow templates created by hand referencing terms
available in PC process ontology

 67

The workflow used in the request above used the following classes from the process
ontology namespace: GroupDetectionProcess, DataUnionProcess, and
PatternMatchingProcess.

TR-5

 TR-5: The SR-12 System shall use the Process Catalog in the course
of instantiating and
 executing the workflow
 SR Claim: Workflow queries PCat to generate workflows via Q2.1,
Q4.2, Q4.5, Q5.2,
 Q7.1, Q7.2

Q2.1 to PC was invoked 5 times, Q4.2 to PC was invoked 36 times, and Q4.5 to PC was
invoked 36 times.

 SR Claim: Workflow system able to generate candidates and create
executable DAXes on the
 basis of PCat responses for Q2.1, Q4.2, Q4.5, Q5.2, Q7.1, Q7.2

Q2.1 to PC was used to create 4 workflow candidates, Q4.2 and Q4.5 to PC were used
generate executable DAXes for 12 workflow candidates.

TR-6

 TR-6: The SR-12 System shall use the Data Characterization service
to determine which
 workflow template to execute
 SR Claim: Workflow queries DMS to generate workflow candidates via
Q3.1, Q4.1, Q5.1a

Q3.1 to DC was invoked 4 times, Q4.1 to DC was invoked 4 times.

 SR Claim: SR able to create executable DAX's on the basis of PCat
responses for Q3.1, Q4.1, Q5.1a

Q3.1 to DC was used to create 12 workflow candidates, and Q4.1 was used in the
generation of DAXes.

TR-11

 TR-11: The SR-12 System shall demonstrate the ability to exchange
data between workflow components using the GU graph specification
 SR Claim: SR components (via Pegasus / GridFTP) can physically move
files produced on one processing node to another

 68

5.3 SE-18 Evaluation

SR’s contributions to the SE-18 Evaluations include:

 Data Reuse: SR invokes DC services for registering workflow data products
including intermediate products. The extended workflow generation API (Q4.3a
in particular) allows reuse of existing data to save computation

 A workflow ranking algorithm that takes into account ingest time for input data
sources. The ranking algorithm is described in Section 3.2.

 The Ensemble Manager (EM) system was developed to support multiple
concurrent workflow runs. More information about EM is available below in
Section 3.3.

 SR provided detailed Workflow System Logging records.

 The Tangram Grid and software deployment are supported by SR. SR provided
documentation to implement an automated site catalog as well as instructions on
how to install the Tangrid Components and SR Functions.

 An extended Workflow Generation API: Workflow Generation API Version 2.1
was developed and released for the SE-18 evaluation.

Figure 1 highlighted the new SR capabilities developed for SE-18. The following
summarizes the SE-18 metrics and requirements relevant to SR.

5.3.1 SE-18 Metrics and Requirement Relevant to SR

SR implemented capabilities including automatic workflow generation, workflow
ranking, and ensemble manager support the following SE-18 metrics and requirements.

• FM-WF-A-1: Manual construction of a template by a person intending to translate
an analytic line of inquiry into an abstract workflow template. Per SEA’s request,
SR provided a brief document on how to write requests

• FM-WF-A-2: Time to validate / generate candidate workflow instances Not to
Exceed (NTE) 2 minutes. Per PMO's request, SR has created a discussion page on
the workflow generation time metric (FM-WF-A-2). The newly developed
Ensemble Manager manages all workflow generation steps (steps 1-8).

• FM-WF-A-3FM-WF-A-3: Time to set up workflow ranking experiments NTE 1
hour. For this SR have developed extensions to workflow ranking (step 6 of
workflow generation algorithm)

 69

• FM-WF-A-4: Time to collect experiment metrics NTE 120 hours. SR’s design of
logging ontology and format supports this.

• FM-HW-A-1: Deploy Tangram Function on new hardware to include it in the
Tangrid NTE 2 days. SR’s Tangram Grid deployment support includes
instructions to deploy Tangram Grid Functions on a new hardware

• FM-HW-M-1: Any changes to hardware configurations for a node in TanGrid are
reported / captured by any resource requiring an understanding of hardware
configuration / capabilities. SR’s Tangram Grid deployment support includes
documentation to implement probes to update an automated Site Catalog.

• FM-SW-M-1: Changed Tangram Component: NTE 30 minutes to upgrade /
reinstall, configure, and make operational any releasable updates to a Tangram
System Component. SR’s Tangram deployment support instructions on how to
build/install/configure Tangrams SR Components .

• SE18-FR1: The System's execution shall be fully automated. This is supported by
the existing automated workflow generation algorithm.

• SE18-FR2: The System shall operate continuously. SR’s Ensemble Manager can
be configured to support continuous operation.

• SE18-FR8: For SE-18, at least 50 distinct lines of inquiry can be running
concurrently (for SE-18, a line of inquiry will be equivalent to a workflow
request). The Ensemble Manager handles multiple requests.

• SE18-FR9: The System shall log all data accesses, to include at least time of
access, LOI, workflow instance in order to provide a full audit log of data-related
activities conducted by the System. The new Workflow System Logging supports
necessary audit log.

• SE18-FR10: The System shall enable the automated introduction and
characterization of new workflow components to a Tangram System environment
without interrupting surveillance and warning functions. This is supported by the
automated workflow generation algorithm.

• SE18-FR11: The System shall enable the automated characterization and
ingestion of newly identified data sources without interrupting surveillance and
warning functions. This is supported by the automated workflow generation
algorithm.

• SE18-FR12: The System shall enable the automated inclusion and instantiation of
new workflow requests without interrupting surveillance and warning functions.
The Ensemble Manager handles multiple concurrent requests.

 70

• SE18-FR13: The System shall enable the inclusion of new hardware into its
operating environment without interrupting surveillance and warning functions
SR’s Tangram Grid deployment support includes probes to populate Site Catalog.

• SE18-FR14: The System shall enable the automated introduction and
characterization of modified workflow components to a Tangram System
environment without interrupting surveillance and warning functions. This is
supported by the automated workflow generation algorithm.

• SE18-FR15: The System shall enable the automated characterization and
ingestion of modified data sources without interrupting surveillance and warning
functions. This is supported by the automated workflow generation algorithm.

• SE18-FR16: The System shall enable the automated inclusion and instantiation of
modified workflow requests without interrupting surveillance and warning
functions. The Ensemble Manager handles multiple concurrent requests.

• SE18-FR17: The System shall enable the removal of existing execution hardware
from its operating environment without interrupting surveillance and warning
functions. This is supported by the existing workflow mapping algorithm.

• SE18-TR1: The SE-18 System shall encode and interpret workflow templates
referencing process types available via the Process Catalog ontologies (e.g.
Capability Layer of PDL). This is supported by the automated workflow
generation algorithm.

• SE18-TR2: The SE-18 System shall demonstrate the ability to accept multiple,
distinct workflow request concurrently. The Ensemble Manager handles multiple
concurrent requests.

• SE18-TR3: The SE-18 System shall demonstrate the ability to generate and rank
workflow instances from multiple workflow requests. SR extended the workflow
ranking (step 6 of workflow generation algorithm) to rank workflow instances
from the same workflow request.

• SE18-TR4: The SE-18 System shall demonstrate the ability to tailor/scope
workflow instances on the basis of characteristics of available hardware
resources. This is supported by the existing workflow mapping algorithm.

• SE18-TR5: The SE-18 System shall use the Process Catalog in the course of
instantiating the workflow. This is supported by the automated workflow
generation algorithm.

• SE18-TR14: The SE-18 System shall demonstrate the ability to track pedigree
(source identification) of assertions and hypotheses during workflow processing.
The Workflow System Logging will support necessary audit logging.

 71

• SE18-TR15: The SE-18 System shall demonstrate the ability to track lineage
(audit trail) of assertions and hypotheses during workflow processing. The
Workflow System Logging will support necessary audit logging.

• SE18-TR17: The SE-18 System shall demonstrate the ability to orchestrate
workflow components of more than one process type. This is supported by the
automated workflow generation algorithm.

• SE18-ER4: The SE-18 System shall demonstrate the ability to execute workflow
components on multiple operating system types and versions. This is supported by
the existing workflow mapping algorithm. SR deployed an ISI testbed with a
cluster containing a variety of architectures and operating systems including x86
and x86_64 architectures with Debian and Redhat Linux OS as well as Windows
XP.

6. SUPPORT FOR PROGRAM EVALUATIONS

SR has supported program-wide evaluations with testbed setup and workflow system
logs. The following sections describe each.

6.1 Program Testbed

The SR team has worked on setting up and operating a program-wide testbed. All the
program participants are sharing resources in the testbed, including computing and
storage resources, software and services, and data sources. Figure 11 shows the Tangram
Testbed at the end of the program.

 72

Figure 11: Tangram Testbed

The first milestone of the program testbed activity was to include at least one node
from each program component and at least one node in the Research and Development
Experimental Collaboration (RDEC) facility and to install the workflow system and grid
software to test initial connectivity. This was accomplished on January 15, 2007.

Currently two active testbeds operate at ISI in the form of a Viz Cluster, an 8 node
x86 Cluster running Debian linux and a Wind Cluster, a 5 node x86_64 linux cluster
running Fedora Core and one x86 Windows XP node.

The testbed is also deployed at SEA on artemis.stdc.com and ttwo, tthree, tfour and
tseven.stdc.com nodes.

Changes from SR12 include adding support for Allegro Lisp and Allegro Graph
servers on all testbeds and the Ganglia monitoring system running at SEA which
monitors all the nodes and services in the Tangram Testbed.

 73

6.2 Logging Support

The Tangram program adopted Log4j1a widely used logging library for Java, as its
underlying logging mechanism. Log4j compatible libraries are available for a number of
other programming languages including C, Perl, and Python. Log4j provides a number of
features including the ability to dynamically redirect logging statements to different
locations, for example, a local file or SEA’s logging server as well as filtering out
logging messages based on their level of detail. While Log4j provides an infrastructure
for integrating logging with applications, it does not specify the format, structure, or
content of those logs. Because Tangram has a distributed architecture, it is necessary to
be able to correlate logs generated by multiple components within the architecture. To
facilitate this activity, SR has defined a logging format and ontology. Additionally, the
Workflow Generation API was extended to support the passing of appropriate logging
related identifiers to the Data Catalog, Process Catalog and wrapped components. Finally,
SR developed libraries that assist in the creation of logs that are compatible with the
specified format and logs.

6.2.1 Logging Format

We adopted a format for logs from the technical report Grid Logging: Best Practices
Guide2 produced by the Center for Enabling Distributed Petascale Science3. This format
has a number of benefits including a simple to parse format, extensibility, and scalable
processing [Gunter et al., 2005]. Log messages are defined in terms of key=value pairs.
In each log message, there are a number of required pairs, which are as follows (Note that
the key is given in parenthesis).

• A time stamp (ts) that specifies when the log statement was generated. The
timestamp is specified in terms of the ISO8601 time standard [ISO-8601, 1888].
All times are given in UTC.

• A message identifier (msgid) that uniquely identifies each log message.
• An event name (event) that defines the type of event that this log message pertains

to. Events can be seen as a program activity. For example, during the planning of
a workflow, Pegasus selects the sites at which jobs should be executed, this event
or program activity is called site selection and is given the event type
event.pegasus.siteselection. Thus, all log messages generated by
Pegasus during site selection would have the site selection event type.

o An event name may have suffix, either “.start” or
“.end”, appended to it to denote the beginning and end of an event.

o Each event name is defined in a namespace that begins with event and
includes the program or software component that the event occurs in.

1 http://logging.apache.org/log4j/
2 http://www.cedps.net/images/f/fd/CEDPS-troubleshooting-bestPractices.pdf
3 http://www.cedps.net/

http://logging.apache.org/log4j/
http://www.cedps.net/images/f/fd/CEDPS-troubleshooting-bestPractices.pdf
http://www.cedps.net/

 74

• An event identifier (eventId) that uniquely identifies this event from other events.
This event identifier is shared across log messages for the same event so that
messages about the same event can be associated with one another.

• A key=value pair that defines the entity/data that is being processed during the
event. For example, during planning, Pegasus is operating on a workflow
instance, known as a dax. Thus, each log message would include the pair
dax.id=<identifier for the dax>.

Beyond these required key=value pairs, log messages can have additional key=value
pairs called event attributes that allow additional information about the events to be
extracted from log messages.

6.2.2 Logging Ontology

The Logging Ontology defines the keys and the types for the values associated with those
keys. We now highlight the core parts of the ontology. A full list of ontology terms can
be found on the tangram wiki site. The definitions provided in this ontology were
motivated by another ontology designed to organize performance data for Grid-based
workflow systems [Truong et al , 2007]. In the previous section, we introduced the three
core elements of the ontology: entity identifiers, event types, event attributes.

The entity identifiers specified in the Logging Ontology map to the major data
structures that are handled by the workflow system. To ensure that these data items can
be found within the logs, universally unique ids are used. To ensure uniqueness, we use
identifiers that follow the RFC4122 specification4 but may have additional strings
prepended or appended to the identifier.

The following entity identifiers are defined by the Ontology: Request Portfolio
Identifier (portfolio.id), Workflow Request Identifier (request.id), Workfow Instance
Identifier (dax.id), Executable Workflow Identifier (dag.id), Job Identifier (dag.id +
job.id).5

These entity identifiers are key to being able to track the provenance of the output of
running a portfolio. If the hierarchy of ids from the Job Identifier to the Portfolio
Identifier is maintained, then when analyzing the logs, a user can trace back to the
portfolio that initiated the production of a particular result. To ensure that this hierarchy
is maintained, we introduce a specialized type of log message called

event.id.creation, which enables developers to specify the inheritance
relationship between entities. The format of this message is as follows:

parent.id.type = (key of the parent id)
parent.id = (value of the id)
child.ids.type = key of the child id
child.ids = {value of the child id, ...}6

4 http://www.ietf.org/rfc/rfc4122.txt
5 To provide context to a job.id, it is always paired with the id of the executable workflow that the job
pertains to.
6 Children are assumed to be of the same type.

http://www.ietf.org/rfc/rfc4122.txt

 75

The second element of the ontology is the events within the SR system. These events

correspond to the major processing activities within the processing and execution of a
portfolio. These include events for the management of portfolios (i.e. the ensemble
manager), workflow generation, planning, and finally execution.

 The final element of the ontology is the various additional event attributes that can be
found within log messages. Examples of these attributes, include the hostname and
operating system on which the workflow system runs (system.hostname, system.os), the
contents of queries to the Process Catalog and Data Catalog (query.input), as well as
optional human readable messages (msg). Additionally, SR generates event attributes for
information gathered during job execution by the job wrapping mechanism Kickstart
[Voeckler et al., 2006].

Bellow is an illustration of a log message following the Logging Format and
Ontology we have defined:

ts = 2007-12-08T18:39:19.372375z
msgid = 77285E73-49AB-4EAB-AFED-BFCA90E4CEF4
event = event.pegasus.siteselection.start
eventId = 9AA64C69-D449-428A-8FBC-F46C8E237F40
dax.id = 550e8400-e29b-41d4-a716-446655440000
prog = "Pegasus"
system.hostname = prov.isi.edu
msg = "Doing site selection"

6.2.3 Extension to the Workflow Generation API for Logging

In order to ensure that logs generated by different components within the Tangram
architecture can be successfully correlated, we modified the Workflow Generation API to
pass the appropriate entity identifiers (called logging data identifiers within the API) to
all external components including the underlying wrapped components. Thus, from the
logs, one can see how the processing and execution of a portfolio impacts all the
components within the Tangram system.

6.2.4 Client Side Logging Library

To ease the integration of this logging format with the existing Tangram software, we
developed a library that supports the generation of properly formatted log messages.
Additionally, the library supports the tracking of events, creation of log messages for
those events and automatic generation of some identifiers as well as time stamps. Using
this library, developers do not have to track event id information or repeat entity
identifier information for every log message. While this library was developed for
internal use by SR, it has also been adopted by other program participants.

 76

7. SOFTWARE RELEASES

ISI has developed and released three core pieces of software that correspond to the
architecture shown in Figure 1: Ensemble Manger, Wings (i.e. workflow generation), and
Pegasus (i.e. workflow ranking, mapping and execution). Here we provide installation
instructions for each of these software components. In addition to these instructions, we
provide instructions for installing the Grid Services (such as Condor and Globus) that are
required to execute workflows on the TanGrid.

7.1 Installation of the SR Workflow System

This section provides installation information for the SR workflow system.

7.1.1. Required Software
These are required for installing the SR workflow system.

• ANT
• JAVA 1.5+
• PEGASUS 2.2.0CVS
• WINGS
• CONDOR 7.1.0 only.
• MYSQL

7.1.2. Build and Install Wings

Fetch Wings Code
% svn co
https://tangram.stdc.com/svn/SystemResearch/branches/wings/se18-rev2

Wings Compilation, Installation & Running

% cd se18-rev2

% ant jar
- Creates wings.jar in lib/ directory (and creates a build/ directory)

% ant clean [optional]
- Removes the build/ directory

% chmod 755 awg
- Set execute permissions on the "awg" file

% export WINGS_HOME=/path/to/wings/dir [optional]

https://tangram.stdc.com/svn/SystemResearch/branches/wings/se18-rev2

 77

- The main wings directory (directory containing the "awg" file)
- If not set, "awg" script will automatically set WINGS_HOME to the
directory where it is located

% export PATH=$WINGS_HOME:$PATH [optional]
- If you would like to put the "awg" script in your shell path
- If you didn't set WINGS_HOME above, then use:
 % export PATH=/path/to/wings/dir:$PATH

% vi wings.properties (or any other editor) [optional]
Check Property "ontology.root.dir"
- Change it's value if you would like to use a local copy of the wings
ontology, templates, and seeds.
- If not set (or if the set directory does not exist), it defaults to
<wings_home>/ontology

- The following properties can be set via the properties file as well
as overridden via the command line.
 - logs.dir
 - output.dir

% awg -h (to check options to the script)

Subnote:
- The seed files are present in the ontology/se18/seeds directory
- The template files are present in the ontology/se18 directory

Seed Validation
% awg -v -s <seed name>
- This will print out the seeded template in OWL as Wings understands
it.
- A User can then look at the interpreted template to make sure it
corresponds
 to what the user wants.

Example Runs
% awg -s SE18-SingleGroupDetector-Tangram
- awg simply runs the seed "SE18-SingleGroupDetector-Tangram" with
default options
 and the default configuration file from <wings_home>/wings.properties

% awg -c $HOME/wings.properties -s SE18-SingleGroupDetector-Tangram -l
/tmp/logs -o /tmp/output

- This means that awg runs the seed "SE18-SingleGroupDetector-Tangram"
and stores the logs in /tmp/logs
 directory, and the output daxes in /tmp/output directory, and it
picks up a local configuration
 file from $HOME/wings.properties

 78

Provenance DB Installation (Optional)
The workflow generation provenance data is currently stored in a
database at seagull.isi.edu.

If a local database is required, then please use the file "wgpc.sql" to
populate the database. Then,
edit the wings.properties file and modify wgpc database properties.

Note that this provenance data is different from what is sent over to
SEA via log files.
That will continue to be sent over via log4j.

Set env WINGS_HOME to the Wings directory

$ export WINGS_HOME=<path to wings>

• source $WINGS_HOME/setenv.sh (if your shell is bash)

$source $WINGS_HOME/setenv.sh

7.1.3. Build Pegasus

Download Pegasus from SVN at

https://tangram.stdc.com/svn/SystemResearch/branches/pegasus/current/

Set env PEGASUS_HOME to the Checkout Directory

$export PEGASUS_HOME=<path to pegasus-svn-checkout>

source $PEGASUS_HOME/setup-devel.sh (if your shell is bash)

$ source $PEGASUS_HOME/setup-devel.sh

Build pegasus using ant

$ ant clean dist

7.1.4. Install Pegasus

Copy $PEGASUS_HOME/dist/pegasus-*.tar.gz and untar it

$ cp $PEGASUS_HOME/dist/pegasus-binary-*.tar.gz /tmp $ cd <path to
software installation directory> $ gtar zxvf /tmp/pegasus-binary-
*.tar.gz

https://tangram.stdc.com/svn/SystemResearch/branches/pegasus/current/

 79

Set env PEGASUS_HOME to the binary installation path

$ export PEGASUS_HOME=</path to binary install>

Remove wings jar included in Pegasus

$ rm $PEGASUS_HOME/lib/wings.jar

7.1.5. Build Ensemble Manager

Download Ensemble Manager code from SVN at
https://tangram.stdc.com/svn/SystemResearch/branches/ensemble/current/

Set env ENSEMBLE_HOME to the checked out directory
 $ export ENSEMBLE_HOME=<path checked out>

Source $ENSEMBLE_HOME/setup-devel.csh if your shell is CSH or setup-devel.sh if
your shell is BASH

 $ source $ENSMEBLE_HOME/setup-devel.sh

Run ant clean package
 $ant clean package
Buildfile: build.xml

clean:
 [delete] /nfs/asd2/gmehta/jbproject/Ensemble/dist not found.
 [delete] /nfs/asd2/gmehta/jbproject/Ensemble/build not found.

init:
 [mkdir] Created dir:
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble
 [mkdir] Created dir: /nfs/asd2/gmehta/jbproject/Ensemble/build/src
 [echo] full ISO timestamp:

compile:
 [javac] Compiling 28 source files to
/nfs/asd2/gmehta/jbproject/Ensemble/build/src

...
...
 [mkdir] Created dir:
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble/var
 [copy] Copying 5 files to
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble

https://tangram.stdc.com/svn/SystemResearch/branches/ensemble/current/

 80

 [gzip] Building:
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble.tar.gz
 [delete] Deleting:
/nfs/asd2/gmehta/jbproject/Ensemble/dist/ensemble.tar

A tarball will be created in $ENSEMBLE_HOME/dist/ensemble.tar.gz

7.1.6. Install Ensemble Manager

Copy the binary tarball built in the earlier step to an installation location and untar it
 $ gtar zxvf $ENSEMBLE_HOME/dist/ensemble.tar.gz

Set environment ENSEMBLE_HOME to the untarred directory
 export ENSEMBLE_HOME=<path to ensemble binary directory>

Configure other paths in correct order

$ unset CLASSPATH

$ source $WINGS_HOME/setenv.sh

$ source $PEGASUS_HOME/setup.sh

$ source $ENSEMBLE_HOME/setup.sh

7.1.7. Create the Ensemble Data Base (DB)

As user root create a db for storing the ensemble schema in MySQL

create database <databasename>;

Add a username and password which has access to this db

grant all on <databasename>.* to <username>@"<hostname>" identified by
"<password>";

flush privileges;

 81

Populate the created Db with the ensemble schema from
$ENSMEBLE_HOME/sql/ensemble.sql

mysql -u <username> -p databasename < $ENSEMBLE_HOME/sql/ensemble.sql;

7.1.8. Edit the Ensemble configuration file

Edit the $ENSEMBLE_HOME/etc/properties or create a file $HOME/.ensemblerc

condor.home=<path to condor install home directory>
pegasus.home=<path to pegasus install home directory $PEGASUS_HOME>
wings.home=<path to wings install>
ensemble.db.url=<jdbc url to ensemble db . e.g.
jdbc:mysql://smarty.isi.edu/ensembledb>
ensemble.db=MySQL
ensemble.db.user=<dbusername>
ensemble.db.password=<dbpassword>
ensemble.localdir=<path where the ensemsble workflows are planned and
dags are generated. Default is $ENSEMBLE_HOME/var>

7.1.9. Edit Log4j.configuration file

log4j.rootCategory=DEBUG, File, Console, Socket

log4j.logger.anchor.datametrics=OFF
log4j.logger.com.hp.hpl.jena=OFF
log4j.logger.org.griphyn=DEBUG
log4j.logger.pegasus=DEBUG
log4j.logger.edu.isi=DEBUG

The default file appender

log4j.appender.File=org.apache.log4j.RollingFileAppender
log4j.appender.File.Threshold=DEBUG
log4j.appender.File.File=/tmp/ensemblemanager.log
log4j.appender.File.layout=org.apache.log4j.SimpleLayout
log4j.appender.File.Append=true
log4j.appender.File.MaxFileSize=100MB

Console Appender

log4j.appender.Console=org.apache.log4j.ConsoleAppender
log4j.appender.Console.layout=org.apache.log4j.SimpleLayout
log4j.appender.Console.Threshold=INFO

mysql://smarty.isi.edu/ensembledb

 82

The Socket Appender

log4j.appender.Socket=org.apache.log4j.net.SocketAppender
log4j.appender.Socket.Threshold=INFO
log4j.appender.Socket.RemoteHost=artemis.stdc.com
log4j.appender.Socket.Port=40940
log4j.appender.Socket.ReconnectionDelay=5000
log4j.appender.Socket.LocationInfo=true

The sample log4j.properties shown here is shipped in $ENSEMBLE_HOME and is used
by default. You can modify any of the properties in the
$ENSMEBLE_HOME/log4j.properties or provide an alternative log4j.properties file by
passing the option -Dlog4j.configuration=file:/path/to/log4j.properties/file

Note that you need to add the following entries to any non standard log4j.properties file
for all the logging to appear correctly.

log4j.logger.anchor.datametrics=OFF
log4j.logger.com.hp.hpl.jena=OFF
log4j.logger.org.griphyn=DEBUG
log4j.logger.pegasus=DEBUG
log4j.logger.edu.isi=DEBUG

7.2 Grid Services

This section describes how to set up a node in the program testbed, get certificates, and
install the workflow system and grid software.

7.2.1 Linux Headnode Installation

Required Software

Head Node/Server (Each site should have at least one head node and
several worker nodes)

OS : Linux native or Linux VM.

Software packages :

1. Ant 1.7
2. Java 1.6
3. Allegro Lisp, Allegro Cache, Allegro Graph 8.1 with latest

updates
4. ganglia 3.0.6 or 3.0.7

 83

5. condor 7.1.3
6. globus 4.0.7 or 4.0.8
7. Tangram Software stack

The easiest way to install for several machines if they share a shared file system is to
install the software on the shared file system.

e.g. /nfs/software

create directories for each package eg.

cd /nfs/software

mkdir -p ant/src java/src ganglia/src condor/src globus/src

Install Ant
Download ant

cd /nfs/software/ant/src wget http://wind.isi.edu/software/apache-ant-
1.7.0-bin.tar.gz

cd /nfs/software/ant tar zxvf src/apache-ant-1.7.0-bin.tar.gz

symlink the installation directory to default

ln -s apache-ant-1.7.0 default

add the following paths to /etc/profile

export ANT_HOME=/nfs/software/ant/default export
PATH=$ANT_HOME/bin:$PATH

Install Java
Download java

cd /nfs/software/java/src

wget http://wind.isi.edu/software/jdk-1_5_0_15-linux-i586.bin

wget http://wind.isi.edu/software/jdk-6u5-linux-i586.bin

chmod 755 *.bin

cd /nfs/software/java

sh src/jdk-1_5_0_15-linux-i586.bin

Read the License. Type Yes at the end. The automated installer will
install java 1.5

Symlink the jdk 1.5 to default

sh src/jdk-6u5-linux-i586.bin

Read the License. Type Yes at the end. The automated installer will
install java 1.6

http://wind.isi.edu/software/apache-ant-1.7.0-bin.tar.gz
http://wind.isi.edu/software/apache-ant-1.7.0-bin.tar.gz
http://wind.isi.edu/software/jdk-1_5_0_15-linux-i586.bin
http://wind.isi.edu/software/jdk-6u5-linux-i586.bin

 84

Install Gaglia

Ganglia is a monitoring system that needs to run on each node. It consists of 3 parts:

1) gmond daemon that needs to be installed on each node, 2) gmetad that needs to be run
on the head node or one of the nodes as a gatherer and 3) ganglia-web module which
displays the information and graphs.

Ganglia is available for most distributions via standard yum and apt repositories. If you
can't find them you can install tarballs from http://www.ganglia.org. A system admin just
needs to run the command on all nodes. Depending on your Linux installation you may
need the following extra packages perl-Compress-zlib perl-XML perl-XMLParser Sqlite

 yum install gmond

or
 apt-get install ganglia-monitor libganglia1

And then on the head node:
 yum install gmetad

or
 apt-get install gmetad

Also:
 yum install ganglia-web

or
 apt-get install ganglia-web

If you cannot find these packages you may want to do

yum list ganglia

or
apt-cache search gmond gmetad ganglia

You can also download the ganglia packages from the ganglia website and install them
manually.

After installation copy the gmond.conf file from http://wind.isi.edu/software/gmond.conf
to /etc/gmond.conf on each node

• Modify the gmond.conf file for your setup.

o Edit the following section and put values for your cluster.

http://www.ganglia.org
http://wind.isi.edu/software/gmond.conf

 85

cluster {

 name = "Windward"
 owner = "ISI / CGT"
 latlong = "N30.0 W122.23"
 url = "http://wind.isi.edu/ganglia"

}

o edit the udp_send_channel section and change the mcast_join hostname/ip
to be the hostname where your gmetad daemon is running.

udp_send_channel {

 mcast_join = wind.isi.edu
 port = 8649
 ttl = 1

}

• Copy the gmetad.conf file from http://wind.isi.edu/software/gmetad.conf to
/etc/gmetad.conf on the node running the gmetad daemon.

o change the gridname to your Grid name.
o Change trusted_hosts to add wind.isi.edu and 128.9.72.178 if not already

there.
o Send to gmehta@isi.edu the host/ip info where your gmetad is running.

• Start all the gmond daemons by running the /etc/init.d/gmond and
/etc/init.d/gmetad scripts.

• If you installed the ganglia-web package then you may additionally need to start
your httpd server to show graphs. Otherwise your site will still be displayed on
the wind.isi.edu/ganglia url

Install Condor

• Download and untar condor version 7.1.3 from http://cs.wisc.edu/condor for your
linux os and architecture. Download the dynamic tar.gz packages instead of
RPM's

• You may additionally need to install compat-libstdc++ libraries if your condor
installation does not work. You will get an error when you try to start condor and
this will be in the logs.

• After untaring in /nfs/software/condor/src/condor-7.1.3 run the ./condor-configure
script

o ./condor_install --install-dir <path to installation> --
make-personal-condor --owner=condor

http://wind.isi.edu/ganglia
http://wind.isi.edu/software/gmetad.conf
mailto:gmehta@isi.edu
http://cs.wisc.edu/condor

 86

(the make personal condor is only if you are running a single node cluster.

If you plan to install condor for multiple nodes, then you may want to make the head node
just act as a submit node --type=submit and select some other node to be a central
manager which normally does not run any job. All the cluster nodes will then be of
type=execute.)

o The script may prompt you to specify local condor directory. Set them to a
non shared file system.

o If you plan to install condor also as a scheduler for various nodes in the
cluster you will need additional configuration on each node.

o On each node set the CONDOR_HOST to a machine acting as the central
manager. This is generally the machine where your ran the condor-
configure command as --make-personal-condor or as --type=manager.

Check the condor_config file written in path-to-installation/etc/condor_config

You may additionally need to change an entry in the condor_config file where it says
HOSTALLOW_WRITE to be *.yourdomain, *.isi.edu, *.stdc.com

Set env variables PATH=<path to condor/bin>:<path to condor/sbin>:$PATH
CONDOR_CONFIG=<path to condor/etc/condor_config>

Once condor is installed run the the command as root.

/nfs/software/condor/<path where condor was installed>/sbin/condor_master

You should see several condor daemons start up. e.g. master, collector, negotiator(if your
machine is set to manager), schedd (if your machine is set to submit), startd (if your
machine is set to execute) or all of them if you chose (personal-condor).

You can either write a inetd script to start your condor automatically at start time or
modify the file in /nfs/software/condor/<install>/examples/condor.boot and install it in
the appropriate inetd locations.

Install Globus

Download globus 4.07 binary from www.globus.org for your system.

save it in /nfs/software/globus/src

• Untar the binary tarball

• Run the command
o ./configure --prefix=/nfs/software/globus/4.0.7 --enable-wsgram-condor --

disable-tests --disable-wstests

http://www.globus.org

 87

(If you are running torque/pbs or some other scheduler other then condor you will need to
do --enable-wsgram-pbs or --enable-wsgram-lsf etc.)

• Globus will be installed in /nfs/sofware/globus/4.0.7.
• Make a symlink from 4.0.7 to default

• If you install globus on a shared file system you may want to move the globus/var
and globus/tmp directories to a local file system and symlink them from the
installation directory e.g.

cd /nfs/software/globus/4.0.7 mkdir /var/spool/globus mv var
/var/spool/globus/var mv tmp /var/spool/globus/tmp

ln -s /var/spool/globus/var var ln -s /var/spool/globus/tmp tmp

• You will need to write several files to enable globus services.
• To start with

o Write a file called globus-gatekeeper in /etc/xinetd.d directory

service globus-gatekeeper
 {
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /nfs/software/globus/default/sbin/globus-
gatekeeper
 server_args = -conf /nfs/software/globus/default/etc/globus-
gatekeeper.conf
 disable = no
 env = LD_LIBRARY_PATH=/nfs/software/globus/default/lib
 env += GLOBUS_LOCATION=/nfs/software/globus/default
 env += GLOBUS_TCP_PORT_RANGE=40000,41000
 }

o Write a file called gridftp in the same directory

service gridftp
 {
 instances = 100
 socket_type = stream
 wait = no
 user = root
 server =
/nfs/software/globus/default/sbin/globus-gridftp-server
 server_args = -i -d info -l
/var/spool/globus/var/gridftp.log
 log_on_success += DURATION USERID
 log_on_failure += USERID
 nice = 10
 disable = no

 88

 env +=
GLOBUS_LOCATION=/nfs/software/globus/default
 env +=
PATH=/nfs/software/globus/default/bin:/nfs/software/globus/default/sbin
 env +=
LD_LIBRARY_PATH=/nfs/software/globus/default/lib
 env += GLOBUS_TCP_PORT_RANGE=40000,41000
 }

• edit all the paths to the globus software mentioned in the above file for your
environment.

• edit the GLOBUS_TCP_PORT_RANGE to define the ports which you have
poked in your firewall.

• edit the file /etc/services and add the lines

gridftp 2811/tcp globus-gatekeeper 2119/tcp

• Restart xinetd

• Start the gsissh server by first copying the file
/nfs/software/globus/4.0.7/sbin/SXXsshd to /etc/init.d/gsisshd

• cd /etc/init.d
• Run /sbin/chkconfig --add gsisshd

• Edit /nfs/software/globus/4.0.7/etc/ssh/sshd.conf
• Uncomment the port line on the top and change it from 22 to 40022

• Start the gsissh server by running the script as root /etc/init.d/gsisshd start

/etc/grid-security

Download the package http://wind.isi.edu/software/grid-security.tar.gz

Untar the package as root in /etc.

This will create directory called grid-security with the CA certificates etc in place.

GRIDMAP file

A file named grid-mapfile has to be created to map DN credentials to local users on the
node.

The file format is

"/DN/FOO/BAR" userid "/DN/BAR/FOO" userid2

The allocated user DN's are mentioned below. This will be later provided as an auto
update file which every site can download using wget in a cron job.

http://wind.isi.edu/software/grid-security.tar.gz

 89

TESTING GLOBUS

Make sure you set your environment variables to include

GLOBUS_LOCATION=</path to globus dir>

and source $GLOBUS_LOCATION/etc/globus-user-env.sh

After you have installed your User and host certs as described below, you need to run the
command

grid-proxy-init

This will generate a proxy valid for 12 hours

Then Follow the testing the ISI grid instructions at the bottom.

To test your own grid server just change the hostname to your hostname.

7.2.2 Linux Cluster Node Installation

Follow similar instructions at:

https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Linux_Cluster_node-
Instructions

7.2.3 Windows Node Installation

Follow similar instructions at:

https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Windows_node-Instructions

8. INTERIM PROJECT REPORTS AND DOCUMENTATION
RELEASED

The following reports and documentation were made available in the program wiki. The
software released is described separately in the next section.

• Instructions for modifying and maintaining site Catalogs -- Released Oct 4, 2008.

https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Linux_Cluster_node-Instructions
https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Linux_Cluster_node-Instructions
https://wiki.boozallenet.com/tangram/index.php/SR-SE-18-Windows_node-Instructions

 90

• Instructions for the Ensemble Manager installation -- Released September 15,
2008.

• Instructions for template validation in Wings -- Released September 12, 2008.

• SR SE-18 Acceptance Test Cases -- Released July 31, 2008.

• Workflow Generation API Version 2.1 -- Released: June 10, 2008.

• Documentation on workflow requests to task the workflow system -- Released
May 16, 2008.

• Formulating workflow requests for SE-18

• General documentation and background on workflow requests

• Workflow Generation API for SE-18 -- Released April 8, 2008.

• SR Critical Design Review for SE18 -- Released March 14, 2008.

• Formalization and algorithm for automated generation of computational
workflows from templates -- Released March 14, 2008.

• SR Preliminary Design Review for SE18 -- Released February 22, 2008.

• Design document for a user interface to the workflow system -- Released
November 26, 2007.

• Description of SR-12 workflow ranking algorithm -- Released November 9, 2007.

• SR planning materials prepared for the Working Group Session held in Chicago
IL on November 8-9, 2007.

• SR_Workflow_Generation_API_V1.9 - Released September 4, 2007.

• Workflow System Logs description - Released July 20, 2007.

• SR planning materials prepared for the Working Group Session held in Chicago
IL on July 19, 2007:

o SR plans for SR-12, SE-18, and beyond

o SR high-level architecture

o SR thoughts on other program requirements, architecture and design
issues

• Ensemble Manager description -- Released July 13, 2007

• SR_Workflow_Generation_API_V1.85 -- Released July 11, 2007.

• SR_Workflow_Generation_API_V1.8 -- Released June 3, 2007.

• Basic Component Encapsulation -- Basic information to describe the
encapsulation of executable codes and associated wrappers as workflow
components. Released April 13, 2007.

• SR_Workflow_Generation_API_V1.1 -- Released April 5, 2007.

• SR6_Metadata_Notes -- Metadata analysis for SR-6 group finding workflows.
Released March 30, 2007.

 91

• Running SR-6 workflows -- Detailed instructions to create and run SR-6
workflows. Released March 29, 2007.

• Wings Workflow Creation System -- Instructions to install the Wings software,
which includes a workflow template browser/editor and an automatic workflow
planning and generation capability that creates workflow instances to submit to
Pegasus. Released March 22, 2007.

• SR-6 Demonstration Report - reviewed at the SR March 1, 2007 site visit.

• Workflow Generation API - Describes the current draft of the proposed API for
SR's automatic workflow generation capability. This API does not cover other
reasoners needed by SR for workflow template editing, workflow template
validation, workflow visualization, and other aspects of workflow management.

• Automated Workflow Generation Process - Describes the approach to SR's
automatic workflow generation capability.

• Wings/Pegasus Overview - Describes algorithm and data models used in the
current implementation of the Wings/Pegasus workflow system.

• 20061214-SR-GroupSubWorkflowVariants-v2.pdf -- a report describing the
workflows demonstrated in December 2006 by SR.

• 20061128-SR-SR6-DataConops-v1.pdf -- describes the conops for the data
sources used in the workflow. It also outlines the assumptions made regarding the
data.

• 20061102-SR-HatsBatchData-v1.pdf -- a description of the data generated by the
Hats simulator.

• Link to the Hats simulator web site used for synthetic data generation in SR-6.

• conops-SR6.doc -- a draft overall conops for the six-month demo from October
31, 2006. It also describes the design of the workflow and the algorithms and data
to be used. The overall goals for SR-6 evolved in later months so those portions of
this document are dated.

• 061213-SR-AlgorithmInfoRequiredForGrid-v3.doc -- Describes what information
is needed by Pegasus from the Algorithm Catalog.

• Best Practices for Writing Codes of Workflow Components -- Describes best
practices for developing application codes to be run on the Grid. This was
originally described in the document 061201-SR-RunningCodesGrid-v2.doc.

• Componentizing Legacy Codes -- Examples of how to wrap legacy codes for
execution on the Grid. It reports lessons learned from the process of
componentizing third party codes for the SR-6 demo, and includes a section on
building standalone executables in Lisp. This was originally described in the
document 061208-SR-ComponentizingCodes-v4.pdf.

• FAQ on setting up grid nodes -- Extensive documentation on program testbed,
including how to set up a grid node, how to obtain certificates, how to install grid
services and workflow system.

 92

• Globus web site (http://www.globus/) includes many accessible materials, papers,
and software downloads.

• Ontologies and catalogs used in Wings/Pegasus (http://vtcpc.isi.edu/provenance)
shown for an example workflow, including pointers to OWL domain ontologies,
OWL component models, metadata, and representations for a workflow template,
a workflow instance, a DAX, and an executable workflow.

• Pegasus web site (http://pegasus.isi.edu/) -- includes many descriptive papers and
software download.

• Wings web site (http://www.isi.edu/ikcap/wings/) -- includes papers and detailed
information about the approach.

9. CONCLUSIONS

This Program was divided into Phases. In the first phase the Program concentrated on
building the Core Functionality, which included the basic grid infrastructure and basic
workflow composition and execution functionality. The second phase was focused on
developing the Feasibility functionality. This included plug and play analytic
components, data characterization services, component process characterization and
greatly improved core functionality. The third phase was to be focused on Core
Intelligence, emphasizing the development and testing of complete computational
analytic workflows that serve as threat detectors and alerting functions. Due to funding
cutbacks the Program did not continue to the third phase. We did however, achieve
significant success and did prove the feasibility of the workflow concept.

http://www.globus/
http://vtcpc.isi.edu/provenance
http://pegasus.isi.edu/
http://www.isi.edu/ikcap/wings/

 93

10. REFERENCES

1. Ashley, K. D. and Aleven, V, 1997, Reasoning symbolically about partially matched
cases. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence. San Francisco, CA: Morgan Kaufmann, pp. 335–341.

2. Baader, F. and P. Narendran, "Unification of Concept Terms in Description Logics",
Journal of Symbolic Computation, 2001.

3. Baader, F. C. Lutz, M. Milicic, U. Sattler, and F. Wolter. "Integrating Description
Logics and Action Formalisms: First Results", Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA, USA, 2005.

4. Bergmann R and Stahl, A, 1998, Similarity measures for object-oriented case
representations. In Proceedings of the Fourth European Workshop on Case-Based
Reasoning. Berlin: Springer, pp. 25–36.

5. Champin, PA and Solnon, C, 2003, Measuring the similarity of labeled graphs. In
Proceedings of the Fifth International Conference on Case-Based Reasoning. Berlin:
Springer, pp. 80–95.

6. Condor Dagman. http://www.cs.wisc.edu/condor/dagman, 2008.
7. Gunter, D.K. and Tierney, B. L. Scalable Analysis of Distributed Workflow Traces,

The 2005 International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA'05)

8. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K.,
Lazzarini, A., Arbree, A., Cavanaugh, R., and Koranda, S. “Mapping Abstract
Workflows onto Grid Environments.” Journal of Grid Computing, Vol. 1, No. 1,
2003.

9. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi,K.,
Livny, M., Pegasus: Mapping Scientific Workflows onto the Grid. In Across Grids
Conference 2004.

10. Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi,
K., Berriman, G. B., Good, J., Laity, A., Jacob, J. C., and D. S. Katz. "Pegasus: a
Framework for Mapping Complex Scientific Workflows onto Distributed Systems".
Scientific Programming Journal, Vol 13(3), 2005.

11. Deelman, E., and Gil, Y. (Eds). "Final Report of the NSF Workshop on Challenges
of Scientific Workflows", National Science Foundation, Arlington, VA, May 1-2,
2006. http://www.isi.edu/nsf-workflows06.

12. Forbus, K, Gentner, D and Law, K, 1994, MAC/FAC: a model of similarity-based
retrieval. Cognitive Science 19(2), 141–205.

13. Gil, Y., Ratnakar, V., and Deelman, E. Virtual Metadata Catalogs: Augmenting
Metadata Catalogs with Semantic Representations. Fourth International Semantic
Web Conference (ISWC-05), Galway, Ireland, November 7-10, 2005.

14. Gil, Y. “Workflow Composition”. In Workflows for e-Science, D. Gannon, E.
Deelman, M. Shields, I. Taylor (Eds), Springer Verlag, 2006.

15. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G. and J. Kim. "Wings for Pegasus:
Creating Large-Scale Scientific Applications Using Semantic Representations of
Computational Workflows." Proceedings of the 19th Annual Conference on
Innovative Applications of Artificial Intelligence (IAAI), Vancouver, British
Columbia, Canada, July 22-26, 2007.

http://www.cs.wisc.edu/condor/dagman
http://www.isi.edu/nsf-workflows06

 94

16. Gil, Yolanda, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox,
Dennis Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers.
“Examining the Challenges of Scientific Workflows,” IEEE Computer, vol. 40, no.
12, pp. 24-32, December, 2007.

17. Goderis, A., Li, P., Goble, C.A.: Workflow discovery: the problem, a case study from
e-science and a graph-based solution. In: ICWS, IEEE Computer Society (2006) 312–
319.

18. Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., and Stevens, R. “Deciding
Semantic Matching of Stateless Services.” Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI), 2006.

19. ISO-8601, “Data Elements and Interchange Formats - Information Exchange -
Representation of Dates and Times”, International Organization for Standardization,
1888 http://www.iso.ch/markete/8601.pdf

20. Haluk Topcuoglu, Salim Hariri, Min-You Wu, "Task Scheduling Algorithms for
Heterogeneous Processors," hcw , p. 3, 1999.

21. Jena, Semantic Web Framework for Java. http://jena.sourceforge.net, 2008.
22. Voeckler, J. Mehta, G., Zhao, Y., Deelman, E., Wilde, M. .Kickstarting Remote

Applications, Presented at GCE06 Second International Workshop on Grid
Computing Environments.

23. Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V. Provenance Trails in the
Wings/Pegasus Workflow System", In Concurrency and Computation: Practice and
Experience, Special Issue on the First Provenance Challenge, 2007.

24. Kim, J., Gil, Y., Ratnakar, V. Semantic Metadata Generation for Large
ScientificWorkflows. In Proceedings of the International Semantic Web Conference
2006.

25. Li, L., and Horrocks, I., "A software framework for matchmaking based on semantic
web technology", Proceedings of the World Wide Web Conference (WWW), 2003.

26. Liskov, B. and Guttag, J. “Abstraction and Specification in Program Development.”
MIT Press, 1986.

27. Moody 2006. Hats Simulator Batch Data Sets, https://wiki.boozallenet.com/tangram-
/images/f/fb/20061102-SR-HatsBatchData-v1.pdf, Nov 2, 2006

28. OWL. http://www.w3.org/TR/owl-guide, 2008.
29. Pegasus. http://pegasus.isi.edu, 2008.
30. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M.,

Patil, S., Pearlman, L. A Metadata Catalog Service for Data Intensive Applications.
SC 2003, 2003.

31. Topcuoglu, T., Hariri, S., Wu, M. Task Scheduling Algorithms for Heterogeneous
Processors. Heterogeneous Computing Workshop 1999: 3-14.

32. WingsPegasus 2007, Wings/Pegasus for the First Provenance Challenge.
http://vtcpc.isi.edu/provenance, 2007.

33. Wings: Workflow INstance Generation and Selection.
http://www.isi.edu/ikcap/wings, 2008.

34. WingsPegasus 2008, Wings Pegasus Overview,
https://wiki.boozallenet.com/tangram/index.php/SR_WINGS_PEGASUS_OVERVIEW.

35. SR SR-12 Report wiki, https://wiki.boozallenet.com/tangram/index.php/SR-SR-
12_Report

http://www.iso.ch/markete/8601.pdf
http://jena.sourceforge.net
https://wiki.boozallenet.com/tangram-/images/f/fb/20061102-SR-HatsBatchData-v1.pdf
https://wiki.boozallenet.com/tangram-/images/f/fb/20061102-SR-HatsBatchData-v1.pdf
http://www.w3.org/TR/owl-guide
http://pegasus.isi.edu
http://vtcpc.isi.edu/provenance
http://www.isi.edu/ikcap/wings
https://wiki.boozallenet.com/tangram/index.php/SR_WINGS_PEGASUS_OVERVIEW
https://wiki.boozallenet.com/tangram/index.php/SR-SR-12_Report
https://wiki.boozallenet.com/tangram/index.php/SR-SR-12_Report

 95

36. SR tangram wiki, https://wiki.boozallenet.com/tangram/index.php/System_Research
37. Truong, H., Dustdar, S., Fahringer, T., Performance Metrics and Ontology for Grid

Workflows, Future Generation of Computer Systems Elsevier, 2007.

https://wiki.boozallenet.com/tangram/index.php/System_Research

 96

11. ACRONYMS

API Application Programming Interface

AC Algorithm Catalog

DAG Directed Acyclic Graph

DAX DAG XML (Directed Acyclic Graph Extensible Markup Language)

DC Data Catalog

DOD Data Object Description

EM Ensemble Manager

FR Functional Requirements

ISI Information Sciences Institute

MySQL My Structured Query Language

PC Process Catalog

RDEC Research and Development Experimental Collaboration Facility

SEA System Evaluation Architecture

SE-18 System Evaluation at 18 months

SR System Research

SR-12 System Research demonstration at 12 months

TR Technical Requirement

XML Extensible Markup Language

